pisatin demethylase
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

2012 ◽  
Vol 49 (11) ◽  
pp. 933-942 ◽  
Author(s):  
Nicholas A. Milani ◽  
Daniel P. Lawrence ◽  
A. Elizabeth Arnold ◽  
Hans D. VanEtten

2011 ◽  
Vol 24 (12) ◽  
pp. 1482-1491 ◽  
Author(s):  
Jeffrey J. Coleman ◽  
Catherine C. Wasmann ◽  
Toshiyuki Usami ◽  
Gerard J. White ◽  
Esteban D. Temporini ◽  
...  

The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda– F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.


2002 ◽  
Vol 15 (8) ◽  
pp. 840-846 ◽  
Author(s):  
Deanna L. Funnell ◽  
Hans D. VanEtten

Studies on the wide-host-range fungus Nectria haematococca MP VI have shown a linkage between virulence on pea and five of nine PDA genes that encode the ability to detoxify the pea phytoalexin, pisatin. Most of the PDA genes are on chromosomes of approximately 1.6 megabases (Mb) and two of these genes, PDA1-2 and PDA6-1, have been demonstrated to reside on approximately 1.6-Mb chromosomes that can be lost during meiosis. Prior studies also have shown that the dispensable chromosome carrying PDA6-1 contains a gene (MAK1) necessary for maximum virulence on chickpea. The present study evaluated whether the other approximately 1.6-Mb chromosomes that carry PDA genes also are dispensable, their relationship to each other, and whether they contain genes for pathogenicity on hosts other than pea or chickpea. DNA from the PDA1-1 chromosome (associated with virulence on pea) and the PDA6-1 chromosome (associated with virulence on chickpea) were used to probe blots of contour-clamped homogeneous electric field (CHEF) gels of isolates carrying different PDA genes and genetically related Pda¯ isolates. All of the approximately 1.6-Mb PDA-bearing chromosomes hybridized with both probes, indicating that they share significant similarity. Genetically related Pda¯ progeny lacked chromosomes of approximately 1.6 Mb and there was no significant hybridization of any chromosomes to the PDA1-1 and PDA6-1 chromosome probes. When isolates carrying different PDA genes and related Pda¯ isolates were tested for virulence on carrot and ripe tomato, there was no significant difference in lesion sizes produced by Pda+ and Pda- isolates, indicating that genes for pathogenicity on these hosts are not on the PDA-containing chromosomes. These results support the hypothesis that the chromosomes carrying PDA genes are dispensable and carry host-specific virulence genes while genes for pathogenicity on other hosts are carried on other chromosomes.


Sign in / Sign up

Export Citation Format

Share Document