scholarly journals Identification of an Arabidopsis thaliana Mutation (vsm1) That Restricts Systemic Movement of Tobamoviruses

1998 ◽  
Vol 11 (7) ◽  
pp. 706-709 ◽  
Author(s):  
Robert T. Lartey ◽  
Soumitra Ghoshroy ◽  
Vitaly Citovsky

Following inoculation, many plant viruses spread locally from cell to cell until they reach the vascular system, through which they then move to other parts of the plant, resulting in systemic infection. To isolate host genes involved in systemic transport of plant viruses, ethyl methanesulfonate-mutagenized Arabidopsis thaliana plants were screened for significant delays in the systemic movement of turnip vein clearing virus (TCVC). One such mutant, designated vsm1 (virus systemic movement), was identified. Unlike the wild-type plants, vsm1 did not develop viral disease and did not allow the systemic spread of the virus. The local viral movement within the inoculated vsm1 leaves, however, was not affected. TVCV systemic movement within the vsm1 plants was likely blocked at the step of viral entry into the host plant vasculature from the infected leaf tissue. vsm1 plants also restricted the systemic movement of another tobamovirus but not of an unrelated carmovirus.

2002 ◽  
Vol 15 (3) ◽  
pp. 193-202 ◽  
Author(s):  
Feng Qu ◽  
T. Jack Morris

Tomato bushy stunt virus (TBSV) is one of few RNA plant viruses capable of moving systemically in some hosts in the absence of coat protein (CP). TBSV also encodes another protein (p19) that is not required for systemic movement but functions as a symptom determinant in Nicotiana ben-thamiana. Here, the role of both CP and p19 in the systemic spread has been reevaluated by utilizing transgenic N. ben-thamiana plants expressing the movement protein (MP) of Red clover necrotic mosaic virus and chimeric TBSV mutants that express CP of Turnip crinkle virus. Through careful examination of the infection phenotype of a series of mutants with changes in the CP and p19 genes, we demonstrate that both of these genes are required for efficient systemic invasion of TBSV in N. benthamiana. The CP likely enables efficient viral unloading from the vascular system in the form of assembled virions, whereas p19 enhances systemic infection by suppressing the virus-induced gene silencing.


2014 ◽  
Vol 11 (98) ◽  
pp. 20140555 ◽  
Author(s):  
Guillermo Rodrigo ◽  
Mark P. Zwart ◽  
Santiago F. Elena

The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host–pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within- and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Xin Tong ◽  
Song-Yu Liu ◽  
Long-Xiang Chai ◽  
Fei-Fan Zhu ◽  
...  

1969 ◽  
Vol 40 (3) ◽  
pp. 814-823 ◽  
Author(s):  
G. A. de Zoeten ◽  
G. Gaard

Southern bean mosaic virus (SBMV) and Tomato ringspot virus (TomRV) were compared with regard to possible ways of inter- and intracellular translocation. The pore complexes in the nuclear membranes of nuclei in leaf palisade and mesophyll cells of several plant species commonly used in plant virus research were studied. The pore structure resembled that earlier described. The diameter of the pores was great enough to allow icosahedral plant viruses between 25 and 30 mµ wide to move through. SBMV occurred in noncrystalline form in nuclei of infected cells. Although this virus forms paracrystalline structures when partially purified, no virus crystals were seen in the cytoplasm of cells containing high concentrations of SBMV. It was established that this virus could move through nuclear pores. TomRV was found in infected leaf tissue in low concentrations. This virus showed a tendency to crystallize even when present in low concentrations. TomRV was observed only in the cytoplasm, not in nuclei. This virus was present in plasmodesmata, indicating the possibility of cell to cell translocation of whole particles through these structures.


1997 ◽  
Vol 87 (2) ◽  
pp. 209-217 ◽  
Author(s):  
G. P. Munkvold ◽  
D. C. McGee ◽  
W. M. Carlton

The relative importance of several infection pathways (silks, stalks, and seed) leading to kernel infection of maize hybrids by Fusarium moniliforme was investigated in field experiments in 1993 and 1994. Systemic movement of specific fungal strains within plants was detected by using vegetative compatibility as a marker. Transmission of F. moniliforme from inoculated seed to stalks and developing kernels was detected in two of three field experiments; the seed-inoculated strain was detected in kernels on approximately 10% of ears. The percentage of kernels infected with the seed-inoculated strain ranged from 0 to 70%, with a mean of 0 to 2.5% (0 to 8.3% of F. moniliforme-infected kernels). Other pathways to kernel infection were more effective than seed transmission and systemic infection. F. moniliforme strains inoculated into the crowns and stalks of plants were found throughout the stalks and in up to 95% of the kernels in individual plants. Infection through the silks was clearly the most effective pathway to kernel infection. This was the only inoculation method that significantly increased overall incidence of F. moniliforme infection in kernels; the silk-inoculated strain infected up to 100% of the kernels in individual ears, with a treatment mean as high as 83.7% of kernels. When plants were silk-inoculated, the percentage of kernels infected by other F. moniliforme strains from the seed or stalk was reduced, apparently due to competition among strains. This study provides evidence that systemic development of F. moniliforme from maize seed and stalk infections can contribute to kernel infection, but silk infection is a more important pathway for this fungus to reach the kernels.


2020 ◽  
Vol 110 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Merike Sõmera ◽  
Anders Kvarnheden ◽  
Cécile Desbiez ◽  
Dag-Ragnar Blystad ◽  
Pille Sooväli ◽  
...  

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 327 ◽  
Author(s):  
Gustavo Romay ◽  
Francis Geraud-Pouey ◽  
Dorys Chirinos ◽  
Mathieu Mahillon ◽  
Annika Gillis ◽  
...  

Begomoviruses are one of the major groups of plant viruses with an important economic impact on crop production in tropical and subtropical regions. The global spread of its polyphagous vector, the whitefly Bemisia tabaci, has contributed to the emergence and diversification of species within this genus. In this study, we found a putative novel begomovirus infecting tomato plants in Venezuela without a cognate DNA-B component. This begomovirus was genetically characterized and compared with related species. Furthermore, its infectivity was demonstrated by agroinoculation of infectious clones in tomato (Solanum lycopersicum) and Nicotiana benthamiana plants. The name Tomato twisted leaf virus (ToTLV) is proposed. ToTLV showed the typical genome organization of the DNA-A component of New World bipartite begomoviruses. However, the single DNA component of ToTLV was able to develop systemic infection in tomato and N. benthamiana plants, suggesting a monopartite nature of its genome. Interestingly, an additional open reading frame ORF was observed in ToTLV encompassing the intergenic region and the coat protein gene, which is not present in other closely related begomoviruses. A putative transcript from this region was amplified by strand-specific reverse transcription-PCR. Along with recent studies, our results showed that the diversity of monopartite begomoviruses from the New World is greater than previously thought.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Ibrahim ◽  
Jelke Fros ◽  
Andre Bertran ◽  
Ferdyansyah Sechan ◽  
Valerie Odon ◽  
...  

AbstractFrequencies of CpG and UpA dinucleotides in most plant RNA virus genomes show degrees of suppression comparable to those of vertebrate RNA viruses. While pathways that target CpG and UpAs in HIV-1 and echovirus 7 genomes and restrict their replication have been partly characterised, whether an analogous process drives dinucleotide underrepresentation in plant viruses remains undetermined. We examined replication phenotypes of compositionally modified mutants of potato virus Y (PVY) in which CpG or UpA frequencies were maximised in non-structural genes (including helicase and polymerase encoding domains) while retaining protein coding. PYV mutants with increased CpG dinucleotide frequencies showed a dose-dependent reduction in systemic spread and pathogenicity and up to 1000-fold attenuated replication kinetics in distal sites on agroinfiltration of tobacco plants (Nicotiana benthamiana). Even more extraordinarily, comparably modified UpA-high mutants displayed no pathology and over a million-fold reduction in replication. Tobacco plants with knockdown of RDP6 displayed similar attenuation of CpG- and UpA-high mutants suggesting that restriction occurred independently of the plant siRNA antiviral responses. Despite the evolutionary gulf between plant and vertebrate genomes and encoded antiviral strategies, these findings point towards the existence of novel virus restriction pathways in plants functionally analogous to innate defence components in vertebrate cells.


Sign in / Sign up

Export Citation Format

Share Document