scholarly journals Tagging Quantitative Trait Loci for Maturity-Corrected Late Blight Resistance in Tetraploid Potato with PCR-Based Candidate Gene Markers

2004 ◽  
Vol 17 (10) ◽  
pp. 1126-1138 ◽  
Author(s):  
Christina Angelika Bormann ◽  
Andreas Marcus Rickert ◽  
Rosa Angela Castillo Ruiz ◽  
Jürgen Paal ◽  
Jens Lübeck ◽  
...  

Late blight caused by the oomycete Phytophthora infestans is the economically most important and destructive disease in potato cultivation. Quantitative resistance to late blight available in tetraploid cultivars is correlated with late maturity in temperate climates, which is an undesirable characteristic. A total of 30 DNA-based markers known to be linked to loci for pathogen resistance in diploid potato were selected and tested as polymerase chain reaction-based markers for linkage with quantitative trait loci (QTL) for late blight resistance and plant maturity in two half-sib families of tetraploid potatoes. Most markers originated from within or were physically closely linked to candidate genes for quantitative resistance factors. The families were repeatedly evaluated in the field for quantitative resistance to late blight and maturity. Resistance was corrected for the maturity effect. Nine of eleven different map segments tagged by the markers harbored QTL affecting maturity-corrected resistance. Interactions were found between unlinked resistance QTL, providing testable strategies for marker-assisted selection in tetraploid potato. Based on the linkage observed between QTL for resistance and plant maturity and based on the genetic interactions observed between candidate genes tagging resistance QTL, we discuss models for the molecular basis of quantitative resistance and maturity.

2008 ◽  
Vol 88 (4) ◽  
pp. 599-610 ◽  
Author(s):  
Z. D. Tian ◽  
J. Liu ◽  
L. Portal ◽  
M. Bonierbale ◽  
C. H. Xie

Phytophthora infestans, the causal agent of late blight, threatens potato production worldwide. Many quantitative trait loci (QTL) for late blight resistance have been mapped in several potato populations. At the same time, numerous expressed sequences tags (EST) related to late blight resistance have been deposited in databases. In order to screen for putative candidate genes associated with late blight resistance, 65 candidate genes were selected for mapping and investigation of their relationship with QTL in three diploid potato populations PCC1, BCT, and PD. In total, 26 primers from the 65 selected genes that showed PCR length polymorphism were mapped on the linkage groups of three populations. Further comparison between map location of QTL and candidate gene loci indicated that three candidate gene markers were placed in a QTL region. The locus of a putative receptor-like protein kinase b co-localized with an important QTL region on chromosome XI of PCC1. In the PD population, the Lox gene was in a QTL with moderate effect on chromosome III and two protein phosphatase loci were localized in a QTL with the largest effect on chromosome XII. These mapped candidate gene markers could be used as a bridge to other genetic maps of potato. The association of candidate genes with QTL forms the basis for further studies on the contributions of these candidate genes to natural variation for potato late blight resistance. Key words: Candidate gene, quantitative resistance loci, late blight, potato


Author(s):  
Hannele Lindqvist-Kreuze ◽  
Bert De Boeck ◽  
Paula Unger ◽  
Dorcus Gemenet ◽  
Xianping Li ◽  
...  

Abstract The identification of environmentally-stable and globally-predictable resistance to potato late blight is challenged by the clonal and polyploid nature of the crop and the rapid evolution of the pathogen. A diversity panel of tetraploid potato germplasm bred for multiple resistance and quality traits was genotyped by genotyping by sequencing (GBS) and evaluated for late blight resistance in three countries where the International Potato Center (CIP) has established breeding work. Health-indexed, in vitro plants of 380 clones and varieties were distributed from CIP headquarters and tuber seed was produced centrally in Peru, China and Ethiopia. Phenotypes were recorded following field exposure to local isolates of Phytophthora infestans. QTL explaining resistance in four experiments conducted across the three countries were identified in chromosome IX, and environment-specific QTL were found in chromosomes III, V, and X. Different genetic models were evaluated for prediction ability to identify best performing germplasm in each and all environments. The best prediction ability (0.868) was identified with the genomic best linear unbiased predictors (GBLUPs) when using the diploid marker data and QTL-linked markers as fixed effects. Genotypes with high levels of resistance in all environments were identified from the B3, LBHT, and B3-LTVR populations. The results show that many of the advanced clones bred in Peru for high levels of late blight resistance maintain their resistance in Ethiopia and China, suggesting that the centralized selection strategy has been largely successful.


2020 ◽  
Author(s):  
Fang Wang ◽  
Meiling Zou ◽  
Long Zhao ◽  
Huaqing Li ◽  
Zhiqiang Xia ◽  
...  

Abstract Background: Potatoes are dicotyledonous plants of the genus Solanum, family Solanaceae, and contain large amounts of starch, proteins, and trace elements required by the human. Potato late blight is the main disease hindering potato production. In this study, Phytophthora infestans were used to quantify late blight resistance in 284 germplasm resources, and resistance genes were mined through genome-wide association analysis.Results: The results showed that among the 284 potato germplasm resources, 37 showed immunity, 15 were highly resistant to late blight, 30 were moderately resistant to late blight, 107 were moderately susceptible to late blight, and 95 were highly susceptible to late blight. Through screening and filtering, 22,489 high-quality single-nucleotide polymorphisms (SNPs) and indels were obtained. Through population structure analysis and principal-component analysis, 284 germplasm resources were divided into eight subgroups, which was consistent with the results of the phylogenetic tree analysis. The genetic diversity index of the 284 potato germplasm resources was 0.2161, and the differentiation index of each subgroup was 0.0251-0.1489. A mixed linear model was built to perform an association analysis on the diameter of the lesions identified from isolated leaves of potato affected by late blight. The genes within 100 kb of both sides of the obtained significant SNP loci were searched and functionally annotated, and 18 candidate genes were obtained. Twenty-two candidate genes were obtained from the association analysis of disease resistance grade.Conclusions: 284 potato germplasm resources were used to identify for Phytophthora infestans resistance. The potato germplasm resources were divided into 8 subgroups by population structure analysis, and the main differentiation among subgroups was moderate. Candidate genes were mined by genome-wide association analysis.The results of this study provides the foundation for the genetic improvement of potato varieties resistant to late blight.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Emil Stefańczyk ◽  
Jarosław Plich ◽  
Marta Janiszewska ◽  
Paulina Smyda-Dajmund ◽  
Sylwester Sobkowiak ◽  
...  

Abstract Late blight is a disease with the biggest economic impact on potato cultivation worldwide. Pyramiding of the resistance genes originating from potato wild relatives is a breeding strategy that has a potential to produce potato cultivars durably resistant to late blight. Growing such cultivars would allow limiting the intensive chemical control of the disease. The goal of this work was to transfer the late blight resistance gene Rpi-rzc1 from Solanum ruiz-ceballosii to the tetraploid level of cultivated potato and to pyramid it with the Rpi-phu1 gene. We obtained two diploid and, through 4x-2x cross, a tetraploid potato population segregating for the Rpi-rzc1 presence, as well as one diploid and one tetraploid population where both genes were introgressed. In total, 754 progeny clones were tested for resistance to late blight in detached leaflet assays. Pathogen isolates avirulent on plants with both genes and virulent on plants with the Rpi-phu1 were used. The selection was assisted by two PCR markers flanking the Rpi-rzc1 gene and a newly designed, highly specific intragenic marker indicating the Rpi-phu1 gene presence. We obtained 26 diploid and 49 tetraploid potato clones with pyramid of both genes that should enhance the durability and spectrum of their late blight resistance and that can be exploited in potato breeding. The specificity of the marker for the Rpi-phu1 gene and the precision of the Rpi-rzc1 mapping were improved in this work.


2020 ◽  
Author(s):  
Hannele Lindqvist-Kreuze ◽  
Bert de Boeck ◽  
Paula Unger ◽  
Dorcus Gemenet ◽  
Xianping Li ◽  
...  

AbstractThe identification of environmentally stable and globally predictable resistance to potato late blight is challenged by the crop’s clonal and polyploid nature and the pathogen’s rapid evolution. Genome-wide analysis (GWA) of multi-environment trials can add precision to breeding for complex traits. A diversity panel of tetraploid potato germplasm bread for multiple resistance and quality traits was genotyped by genotyping by sequencing (GBS) and phenotyped for late blight resistance in a trait observation network spanning three continents addressed by the International Potato Center’s (CIP’s) breeding program. The aims of this study were to (i) identify QTL underlying resistance in and across environments and (ii) develop prediction models to support the global deployment and use of promising resistance sources in local breeding and variety development programs. Health-indexed in vitro plants of 380 clones and varieties were distributed from CIP headquarters in Peru to China and Ethiopia and tuber seed was produced centrally in each country. Phenotypes were recorded as rAUDPC following field exposure to local isolates of Phytophthora infestans, Stringent filtering for individual read depth >60 resulted in 3,239 tetraploid SNPs. Meanwhile, 55,748 diploid SNPs were identified using diploidized data and individual read depth>17. The kinship matrix was utilized to obtain BLUP and identify best performing germplasm in each and all environments. Genotypes with high levels of resistance in all environments were identified from the B3, LBHT and B3-LTVR populations. GWA identified stable QTL for late blight resistance in chromosome 9 and environment specific QTL in chromosomes 3, 5, 6 and 10.


Sign in / Sign up

Export Citation Format

Share Document