Identification and Occurrence of Wheat Streak Mosaic Virus in Winter Wheat in Colorado and Its Effects on Several Wheat Cultivars

Plant Disease ◽  
1984 ◽  
Vol 68 (1) ◽  
pp. 579 ◽  
Author(s):  
I. M. Shahwan
Author(s):  
Uta McKelvy ◽  
Monica Brelsford ◽  
Jamie Sherman ◽  
Mary Burrows

Wheat streak mosaic virus (WSMV) causes sporadic epidemics in Montana which can threaten profitability of the state’s small grains production. One challenge for WSMV management in Montana is that most commercially available wheat and barley cultivars are susceptible to WSMV or their performance under WSMV pressure is unknown. In a three-year field study from 2017 to 2019 winter wheat, spring wheat, and barley cultivars were evaluated for their susceptibility to WSMV and yield performance under WSMV pressure. Plants were mechanically inoculated and WSMV incidence was assessed using DAS-ELISA. There was effective resistance to WSMV in breeding line CO12D922, which had consistently low WSMV incidence, highlighting promising efforts in the development of WSMV-resistant winter wheat cultivars. Moderate WSMV incidence and minor yield losses were observed from WSMV infection of commercial winter wheat ‘Brawl CL Plus’ and MSU breeding line MTV1681. Spring wheat cultivars in this study had high WSMV incidence of up to 100 % in ‘Duclair,’ ‘Egan,’ and ‘McNeal.’ High WSMV incidence was associated with severe yield losses as high as 85 % for Duclair and ‘WB9879CL’ in 2019, demonstrating a high degree of susceptibility to WSMV inoculation. Barley cultivars had considerably lower WSMV incidence compared to spring and winter wheat. Grain yield response to WSMV inoculation was variable between barley cultivars. The study provided an experimental basis for cultivar recommendations for high WSMV pressure environments and identified breeding lines and cultivars with potential resistance traits of interest to breeding programs that aim to develop WSMV-resistant cultivars.


Euphytica ◽  
2004 ◽  
Vol 139 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Frederick Hakizimana ◽  
Amir M.H. Ibrahim ◽  
Marie A.C. Langham ◽  
Jackie C. Rudd ◽  
Scott D. Haley

2015 ◽  
Vol 102 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Laima Urbanavičienė ◽  
Donatas Šneideris ◽  
Marija Žižytė

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 766-770 ◽  
Author(s):  
J. A. Price ◽  
F. Workneh ◽  
S. R. Evett ◽  
D. C. Jones ◽  
J. Arthur ◽  
...  

Greenhouse and field studies were conducted to determine the effects of Wheat streak mosaic virus (WSMV), a member of the family Potyviridae, on root development and water-use efficiency (WUE) of two hard red winter wheat (Triticum aestivum) cultivars, one susceptible and one resistant to WSMV. In the greenhouse studies, wheat cultivars were grown under three water regimes of 30, 60, and 80% soil saturation capacity. After inoculation with WSMV, plants were grown for approximately 4 weeks and then harvested. Root and shoot weights were measured to determine the effect of the disease on biomass. In all water treatments, root biomass and WUE of inoculated susceptible plants were significantly less (P < 0.05) than those of the noninoculated control plants. However, in the resistant cultivar, significance was only found in the 30 and 60% treatments for root weight and WUE, respectively. Field studies were also conducted under three water regimes based on reference evapotranspiration rates. Significant reductions in forage, grain yield, and crop WUE were observed in the inoculated susceptible plots compared with the noninoculated plots. Both studies demonstrated that wheat streak mosaic reduces WUE, which is a major concern in the Texas Panhandle because of limited availability of water.


2016 ◽  
Vol 29 (9) ◽  
pp. 724-738 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Everlyne N. Wosula ◽  
Melissa Bartels ◽  
Gary L. Hein ◽  
Robert A. Graybosch

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein–tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.


Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Huangjun Lu ◽  
Jacob Price ◽  
Ravindra Devkota ◽  
Charlie Rush ◽  
Jackie Rudd

Euphytica ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 41-49 ◽  
Author(s):  
L. A. Divis ◽  
R. A. Graybosch ◽  
C. J. Peterson ◽  
P. S. Baenziger ◽  
G. L. Hein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document