scholarly journals Effects of Wheat streak mosaic virus on Root Development and Water-Use Efficiency of Hard Red Winter Wheat

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 766-770 ◽  
Author(s):  
J. A. Price ◽  
F. Workneh ◽  
S. R. Evett ◽  
D. C. Jones ◽  
J. Arthur ◽  
...  

Greenhouse and field studies were conducted to determine the effects of Wheat streak mosaic virus (WSMV), a member of the family Potyviridae, on root development and water-use efficiency (WUE) of two hard red winter wheat (Triticum aestivum) cultivars, one susceptible and one resistant to WSMV. In the greenhouse studies, wheat cultivars were grown under three water regimes of 30, 60, and 80% soil saturation capacity. After inoculation with WSMV, plants were grown for approximately 4 weeks and then harvested. Root and shoot weights were measured to determine the effect of the disease on biomass. In all water treatments, root biomass and WUE of inoculated susceptible plants were significantly less (P < 0.05) than those of the noninoculated control plants. However, in the resistant cultivar, significance was only found in the 30 and 60% treatments for root weight and WUE, respectively. Field studies were also conducted under three water regimes based on reference evapotranspiration rates. Significant reductions in forage, grain yield, and crop WUE were observed in the inoculated susceptible plots compared with the noninoculated plots. Both studies demonstrated that wheat streak mosaic reduces WUE, which is a major concern in the Texas Panhandle because of limited availability of water.

2015 ◽  
Vol 105 (5) ◽  
pp. 621-627 ◽  
Author(s):  
Gautam P. Pradhan ◽  
Qingwu Xue ◽  
Kirk E. Jessup ◽  
Baozhen Hao ◽  
Jacob A. Price ◽  
...  

Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.


2020 ◽  
Vol 242 ◽  
pp. 106410
Author(s):  
Yang Lu ◽  
Zongzheng Yan ◽  
Lu Li ◽  
Congshuai Gao ◽  
Liwei Shao

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


Crop Science ◽  
1991 ◽  
Vol 31 (1) ◽  
pp. 246-246 ◽  
Author(s):  
B. S. Gill ◽  
D. L. Wilson ◽  
W. J. Raupp ◽  
J. H. Hatchett ◽  
T. L. Harvey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document