scholarly journals First Report of Powdery Mildew Caused by Golovinomyces orontii on Corn-Salad in the United States

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 686-686 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

Corn-salad or lamb's lettuce (Valerianella locusta) is a specialty leafy green, annual vegetable that is grown commercially in California for use in salads. During the summer (June through August) of 2004, field plantings in coastal California (Monterey County) showed symptoms and signs of a powdery mildew. White, ectophytic mycelia and conidia were present on leaves and petioles. Extensively colonized leaves were slightly twisted and later developed a tan necrosis. Mycelial growth was spread out, flat, sometimes dense, and colonized both sides of the leaf. Growth was more extensive on the upper leaf surfaces. Hyphae were 5 to 7.5 μm wide with nipple-shaped appressoria. Conidiophores were straight and had foot cells that were simple, mostly curved, measured 50 to 65 × 10 to 12.5 μm, and followed by two to three cells of equal size. Conidia developed in short chains. Conidia were cylindric to doliform, measured 27.5 to 32.5 × 15 to 17.5 μm, and lacked fibrosin bodies. Conidial length-to-width ratios were usually less than or equal to 2.0. Conidia germinated at the ends (cichoracearum-type) and had germ tube lengths that ranged from short to 1.0 to 1.5 times the length of the conidium; germ tubes had swollen tips. Cleistothecia were not observed. On the basis of these characteristics, the fungus is identified as Golovinomyces (Erysiphe) orontii(Cast.) Heluta (1). To demonstrate pathogenicity, heavily colonized corn-salad leaves from commercial plantings were collected and gently pressed onto leaves of potted corn-salad plants. Plants were then maintained in a greenhouse (22 to 24°C). After 8 to 10 days, symptoms and signs of powdery mildew developed on the foliage of inoculated plants, and the pathogen morphology matched that of the originally observed pathogen. Noninoculated control plants did not develop powdery mildew. To our knowledge, this is the first report of powdery mildew of corn-salad caused by G. orontii in the United States. This corn-salad disease has been reported from a number of countries in Europe (2). Because the presence of powdery mildew on the harvested foliage made the leaves unmarketable, part of the crop could not be sold. References: (1) U. Braun. Nova Hedwigia 89:1, 1987. (2) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995.

Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 199-199 ◽  
Author(s):  
L. Kiss

Dollar-plant (Crassula ovata) is a perennial, succulent ornamental grown worldwide. In 1998, powdery mildew colonies were observed on the adaxial leaf surfaces of a 4-year-old specimen maintained outdoors. Symptoms included necrosis of the infected tissues and defoliation 2 months after the appearance of the first colonies. Conidia were produced in chains on unbranched conidiophores. Hyphal appressoria were lobed to multi-lobed, mostly opposite or spread. Conidia were ellipsoid to cylindrical, measured 34 to 48 μm × 17 to 26 μm, and contained no fibrosin bodies. On water agar, conidia produced a single germ tube from the end of the conidium. Germ tubes were either very short with lobed appressoria, or were two to three times longer than conidia, and terminated in lobed or unlobed appressoria. Cleistothecia were not produced. The pathogen was identified as an Oidium sp. belonging to the genus Erysiphe sect. Galeopsidis (1). To confirm pathogenicity, small, potted C. ovata plants were placed near the diseased plant in the laboratory. After 2 weeks, powdery mildew appeared on the small plants, and the pathogen was morphologically identical to the original fungus. This is the first report of a powdery mildew fungus on C. ovata, and it is different from both species of the Erysiphaceae identified on other Crassula spp. (1,2). Infected C. ovata leaves were deposited at the Department of Botany of the Hungarian Natural History Museum in Budapest under the accession number BP 91732. References: (1) U. Braun. 1995. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 848-848 ◽  
Author(s):  
M. K. Romberg ◽  
A. H. Kennedy ◽  
M. Ko

In April 2013, unthrifty rose periwinkle (Catharanthus roseus (L.) G. Don) from a residential garden in Mililani, HI, was sent to the Hawaii Department of Agriculture. Symptoms, present on all plants, included leaf chlorosis, defoliation, and premature flower drop with necrotic spots on the adaxial side of leaves corresponding to patches of grayish mildew-like growth on the abaxial side. Samples were collected and sent to USDA PPQ National Identification Services (NIS) for confirmation. At NIS, stereoscope examination of the plants revealed two distinct powdery mildews. One, on the stems and leaves, had dimorphic conidia, with lanceolate primary (54 to 72 × 14 to 22 μm) and cylindrical secondary conidia (49 to 75 × 11 to 21 μm) (n = 25 for each), both with a reticulate surface. This fungus was identified morphologically as Leveillula taurica (Lév.) G. Arnaud (1). The second powdery mildew appeared confined to the sepals and petals. The external hyphae of this fungus produced upright chains of cylindrical to ovoid conidia (up to eight per chain), which contained fibrosin bodies and measured 22 × 12 μm (n = 50) with straight foot cells averaging 43 μm long, placing this fungus in the genus Podosphaera Kunze (1). Plants containing both fungi were accessioned as BPI892677 in the US National Fungal Collection. For molecular characterization, genomic DNA of the Podosphaera was obtained by scraping conidia from a petal and extracting with Thermo Scientific's Lyse and Go PCR Reagent. DNA of the Leveillula was extracted from 5 mm2 of infected leaf using Qiagen's Plant mini kit. The ITS region of each fungus was amplified and sequenced directly with primers ITS1F and ITS4. Each consensus sequence was created from manually edited chromatograms, searched against NCBI's GenBank using MegaBLAST and phylogenetically analyzed in MEGA5.2 under maximum parsimony (MP) in context with most similar hits and representatives from phylogenetic studies (2,3). Sequences from types of these fungi are not available for comparison. The resulting Podosphaera phylogeny grouped the Podosphaera suspect (GenBank KF703448) within a clade of P. pannosa (e.g., AB525938; bootstrap = 90). The Leveillula phylogeny grouped the Leveillula suspect (KF703447) within a clade (bootstrap = 88) of L. taurica (e.g., AB044346), L. chrozophorae (AB044346), and L. elaeagni (AB048350). Although the ITS sequences of these taxa are phylogenetically indistinguishable, morphological characters differentiate each species and the suspect as L. taurica (1). L. taurica has been recorded on C. roseus in India and Korea (1). This is the first report of L. taurica on C. roseus in the United States. This is the first report of P. pannosa on C. roseus worldwide. P. pannosa is commonly known as a powdery mildew of Rosaceae hosts, and has also been reported on hosts in the Anacardaciae and Oleaceae (1). P. pannosa represents the second Podosphaera species reported on any member of the Apocynaceae, with P. sparsa reported on other Apocynaceae genera (1). The presence of two powdery mildew genera on different parts of the same plant could cause multiple forms of damage and impact the production of this popular landscape ornamental plant. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, Netherlands, 2012. (2) S. A. Khodoparast et al. Mycol. Res. 105:909, 2001. (3) S. Takamatsu et al. Persoonia 24:38, 2010.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 198-198 ◽  
Author(s):  
G. E. Holcomb

Banana shrub (Michelia figo (Lour.) Spreng.) is an evergreen grown in southern landscapes in hardiness zones 7 to 9. A powdery mildew disease has been observed sporadically on this plant for several years in the Baton Rouge area during fall months, but symptoms were always mild. During the summer and fall of 1998, banana shrub plants were observed with moderately severe powdery mildew infections that resulted in leaf chlorosis, distortion, and some defoliation. An Oidium sp. was present on both leaf surfaces, but sporulation was more abundant on the abaxial surfaces. Conidia were ellipsoid, produced in chains, devoid of conspicuous fibrosin bodies, and averaged 37 × 19 μm. No sexual stage was found. Conidia brushed from infected leaves to healthy leaves of a potted banana shrub maintained in a greenhouse caused new infections in 5 to 8 days. Factors responsible for the increased severity of the disease in 1998 are unknown, but the unusually dry summer may have contributed to the increased incidence of this disease. An Oidium sp. was listed on M. figo in Australia and the United States (1), but no other reports were found to confirm this. This is the first report of the occurrence of a powdery mildew on M. figo in the United States. Reference: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Press, Tokyo, 1986.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Xiao Hong Lu ◽  
R. Michael Davis ◽  
S. Livingston ◽  
J. Nunez ◽  
Jianjun J. Hao

The identity of 172 isolates of Pythium spp. from cavity spot lesions on carrot produced in California and Michigan was determined, and their sensitivity to three fungicides was examined. Pythium violae accounted for 85% of California isolates, with P. irregulare, P. dissotocum (the first report as a carrot pathogen in the United States), P. ultimum, and P. sulcatum making the balance. P. sulcatum, P. sylvaticum, and P. intermedium were the most commonly recovered (85%) species in Michigan; others from Michigan included P. intermedium, P. irregulare, and an unclassified strain, M2-05. On fungicide-amended media, 93% of isolates were sensitive to mefenoxam (inhibition of mycelial growth was >60% at 10 μg active ingredient [a.i.]/ml); however, two of five isolates of P. irregulare from California were highly resistant (≤60% inhibition at 100 μg a.i./ml); about half of the isolates of P. intermedium and P. sylvaticum and a single isolate of P. violae were highly or intermediately resistant to mefenoxam (>60% inhibition at 100 μg a.i./ml, or ≤60% inhibition at 10 μg a.i./ml). P. dissotocum, P. irregulare, P. sulcatum, M2-05, and three of seven isolates of P. intermedium were insensitive to fluopicolide (effective concentrations for 50% growth inhibition [EC50] were >50 μg a.i./ml), while P. sylvaticum, P. ultimum, P. violae, and some isolates in P. intermedium were sensitive (EC50 < 1 μg a.i./ml). All isolates were sensitive to zoxamide (EC50 < 1 μg a.i./ml). Sensitivity baselines of P. violae to zoxamide and fluopicolide were established.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1664-1664 ◽  
Author(s):  
S. Moparthi ◽  
M. Bradshaw ◽  
K. Frost ◽  
P. B. Hamm ◽  
J. W. Buck

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 329-329
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Rhododendron cultivation has a long history in northern Italy, where a wide selection of varieties and hybrids are grown. In summer 2001, a previously unknown powdery mildew was observed on azalea cv. Mollis (Rhododendron japonicum × R. molle) grown in several gardens in the province of Biella. Initial symptoms included chlorotic spots, followed by white fungal mycelia on both leaf surfaces. Eventually, infected leaves turned reddish and dropped prematurely. Fruit were also infected. On infected tissues, dark brown-to-black spherical cleistothecia developed, alone or in groups. The teleomorph was identified by light microscopy examination of cleistothecia. Cleistothecia measured 110 to 140 µm and were dark brown. They contained four to eight stalked or sessile asci that measured 35 to 45 µm × 40 to 55 µm, each containing six to eight ascospores. Ascospores were ellipsoid to ovoid and measured 12 to 18 µm × 20 to 25 µm. Cleistothecial characteristics were consistent with those described for Microsphaera azaleae but were different from those of the recently described species M. digitata reported in Belgium (1). The presence of conidia was rare in the specimens, so the anamorph could not be identified. To our knowledge, this is the first report of M. azaleae in Italy, but three outbreaks of powdery mildew on rhododendron were first reported in the United Kingdom on plants grown in glasshouses in the mid-1950s, 1969 and 1973 (1). Outdoors, powdery mildew was first reported on rhododendron in Europe in 1981. M. azaleae has been identified as the causal agent of rhododendron powdery mildew in the United Kingdom, Germany, and Switzerland (1). In most cases the disease is readily controlled by regular application of fungicides commonly used against powdery mildews of other crops. Reference: (1) A. J. Inman et al. J. Phytopathol. 148:17, 2000.


Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Potentilla fruticosa L. (bush cinquefoil), belonging to the family Rosaceae, is an ornamental plant used in parks and gardens. During the spring and summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed in several private gardens located near Biella (northern Italy). The adaxial and abaxial surfaces of leaves as well as the stems were covered with white mycelium. Buds and flowers also were affected. As disease progressed, infected leaves turned yellow and dehisced. Conidia formed in chains and were hyaline, ovoid, and measured 24.0 to 36.0 × 15.8 to 24.0 μm (average 30.1 × 20.0 μm). Fibrosin bodies were present. Chasmothecia were numerous, sphaerical, amber colored, and diameters ranged from 84.0 to 98.4 μm (average 90.4 μm). Each chasmothecium contained one ascus with eight ascospores. Ascospores measured 26.5 to 27.2 × 13.2 to 15.6 μm (average 26.8 × 14.0 μm). On the basis of its morphology, the causal agent was determined to be Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu var. aphanis U. Braun (1). Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy P. fruticosa plants. Three plants were inoculated. Three noninoculated plants served as a control. Plants were maintained at temperatures ranging from 12 to 23°C. Ten days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on P. fruticosa in Italy. Erysiphe polygoni D.C. and Sphaerotheca macularis (Wallr.:Fr.) Lind were observed in the United States on P. fruticosa (2), while in Japan, the presence of S. aphanis var aphanis was reported (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) S. Tanda et al. J. Agric. Sci. 39:258, 1995.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 841-841
Author(s):  
H. B. Lee ◽  
H. W. Lee ◽  
H. Y. Mun

Platanus occidentalis L. (sycamore) is an important shade tree distributed throughout the Northern Hemisphere and in South Korea. It has been widely used as an ornamental tree, especially in urban regions and by roadsides. The average rate of roadside planting throughout South Korea covers about 5.7% (up to 38% in Seoul), equivalent to 0.36 million trees. In early July 2012, after a rainy spell in summer, an outbreak of powdery mildew on sycamore was first observed on roadside trees in Gwangju, a southern province of South Korea. A more extensive nationwide survey revealed no powdery mildew in northern or central regions of South Korea. The disease has spread rapidly within Gwangju, even though fungicide applications were carried out after the rainy spell. Major symptoms included white, superficial mycelia, grey to brown lesions on the surface of the leaves due to the presence of a hyperparasite (tentatively identified as Ampelomyces sp.), a slight chlorosis, and severe leaf distortion followed by defoliation. Conidiophores were produced singly, straight, and unbranched, with lengths of 35.2 to 315.2 μm (average 170.4 μm). Conidia were ellipsoid or doliiform, ranging in size from 34.9 to 47.4 μm (average 38.2 μm) long × 16.5 to 26.8 μm (average 23.9 μm) wide. Primary conidia had a truncate base and rounded apex; secondary conidia had both a truncate base and apex. The conidial outer surface had a reticulated wrinkling. Cleistothecia (i.e., sexual spore structures) were not found during the survey, which extended from July to October. These characteristics and the host species match those of Microsphaera platani (syn. Erysiphe platani), which was described on P. occidentalis in Washington State (2). Fungal rDNA was amplified using primers ITS1 and LR5F (4) for one sample (EML-PLA1, GenBank JX485651). BLASTn searches of GenBank revealed high sequence identity to E. platani (99.5% to JQ365943 and 99.3% to JQ365940). Recently, Liang et al. (3) reported the first occurrence of powdery mildew by E. platani on P. orientalis in China based only on its morphology. Thus, in this study, author could only use ITS sequence data from the United States and Europe to characterize the isolate. To date, nine records of powdery mildews of Platanus spp. have been reported worldwide: on P. hispanica from Brazil, Japan, Hungary, and Slovakia; P. orientalis from Israel; P. racemosa from the United States; P. × acerifolia from the United Kingdom and Germany; and Platanus sp. from Argentina and Australia (1). Interestingly, the hyperparasite, Ampelomyces sp., was found with E. platani, suggesting that there may be some level of biocontrol in nature. Pathogenicity was confirmed by gently pressing diseased leaves onto six leaves of healthy sycamore plants in the field in September. The treated leaves were sealed in sterilized vinyl pack to maintain humid condition for 2 days. Similar symptoms were observed on the inoculated leaves 10 days after inoculation. Koch's postulates were fulfilled by re-observing the fungal pathogen. To our knowledge, this is the first report of powdery mildew caused by E. platani on sycamore in South Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ , 2012. (2) D. A. Glawe. Plant Health Progress, doi:10.1094/PHP-2003-0818-01-HN, 2003. (3) C. Liang et al. Plant Pathol. 57:375, 2008. (4) T. J White et al., pp. 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., ed. Academic Press, New York, 1990.


Sign in / Sign up

Export Citation Format

Share Document