scholarly journals First Report of Powdery Mildew on Dollar-plant (Crassula ovata) Caused by an Oidium sp.

Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 199-199 ◽  
Author(s):  
L. Kiss

Dollar-plant (Crassula ovata) is a perennial, succulent ornamental grown worldwide. In 1998, powdery mildew colonies were observed on the adaxial leaf surfaces of a 4-year-old specimen maintained outdoors. Symptoms included necrosis of the infected tissues and defoliation 2 months after the appearance of the first colonies. Conidia were produced in chains on unbranched conidiophores. Hyphal appressoria were lobed to multi-lobed, mostly opposite or spread. Conidia were ellipsoid to cylindrical, measured 34 to 48 μm × 17 to 26 μm, and contained no fibrosin bodies. On water agar, conidia produced a single germ tube from the end of the conidium. Germ tubes were either very short with lobed appressoria, or were two to three times longer than conidia, and terminated in lobed or unlobed appressoria. Cleistothecia were not produced. The pathogen was identified as an Oidium sp. belonging to the genus Erysiphe sect. Galeopsidis (1). To confirm pathogenicity, small, potted C. ovata plants were placed near the diseased plant in the laboratory. After 2 weeks, powdery mildew appeared on the small plants, and the pathogen was morphologically identical to the original fungus. This is the first report of a powdery mildew fungus on C. ovata, and it is different from both species of the Erysiphaceae identified on other Crassula spp. (1,2). Infected C. ovata leaves were deposited at the Department of Botany of the Hungarian Natural History Museum in Budapest under the accession number BP 91732. References: (1) U. Braun. 1995. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 686-686 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

Corn-salad or lamb's lettuce (Valerianella locusta) is a specialty leafy green, annual vegetable that is grown commercially in California for use in salads. During the summer (June through August) of 2004, field plantings in coastal California (Monterey County) showed symptoms and signs of a powdery mildew. White, ectophytic mycelia and conidia were present on leaves and petioles. Extensively colonized leaves were slightly twisted and later developed a tan necrosis. Mycelial growth was spread out, flat, sometimes dense, and colonized both sides of the leaf. Growth was more extensive on the upper leaf surfaces. Hyphae were 5 to 7.5 μm wide with nipple-shaped appressoria. Conidiophores were straight and had foot cells that were simple, mostly curved, measured 50 to 65 × 10 to 12.5 μm, and followed by two to three cells of equal size. Conidia developed in short chains. Conidia were cylindric to doliform, measured 27.5 to 32.5 × 15 to 17.5 μm, and lacked fibrosin bodies. Conidial length-to-width ratios were usually less than or equal to 2.0. Conidia germinated at the ends (cichoracearum-type) and had germ tube lengths that ranged from short to 1.0 to 1.5 times the length of the conidium; germ tubes had swollen tips. Cleistothecia were not observed. On the basis of these characteristics, the fungus is identified as Golovinomyces (Erysiphe) orontii(Cast.) Heluta (1). To demonstrate pathogenicity, heavily colonized corn-salad leaves from commercial plantings were collected and gently pressed onto leaves of potted corn-salad plants. Plants were then maintained in a greenhouse (22 to 24°C). After 8 to 10 days, symptoms and signs of powdery mildew developed on the foliage of inoculated plants, and the pathogen morphology matched that of the originally observed pathogen. Noninoculated control plants did not develop powdery mildew. To our knowledge, this is the first report of powdery mildew of corn-salad caused by G. orontii in the United States. This corn-salad disease has been reported from a number of countries in Europe (2). Because the presence of powdery mildew on the harvested foliage made the leaves unmarketable, part of the crop could not be sold. References: (1) U. Braun. Nova Hedwigia 89:1, 1987. (2) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 329-329
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Rhododendron cultivation has a long history in northern Italy, where a wide selection of varieties and hybrids are grown. In summer 2001, a previously unknown powdery mildew was observed on azalea cv. Mollis (Rhododendron japonicum × R. molle) grown in several gardens in the province of Biella. Initial symptoms included chlorotic spots, followed by white fungal mycelia on both leaf surfaces. Eventually, infected leaves turned reddish and dropped prematurely. Fruit were also infected. On infected tissues, dark brown-to-black spherical cleistothecia developed, alone or in groups. The teleomorph was identified by light microscopy examination of cleistothecia. Cleistothecia measured 110 to 140 µm and were dark brown. They contained four to eight stalked or sessile asci that measured 35 to 45 µm × 40 to 55 µm, each containing six to eight ascospores. Ascospores were ellipsoid to ovoid and measured 12 to 18 µm × 20 to 25 µm. Cleistothecial characteristics were consistent with those described for Microsphaera azaleae but were different from those of the recently described species M. digitata reported in Belgium (1). The presence of conidia was rare in the specimens, so the anamorph could not be identified. To our knowledge, this is the first report of M. azaleae in Italy, but three outbreaks of powdery mildew on rhododendron were first reported in the United Kingdom on plants grown in glasshouses in the mid-1950s, 1969 and 1973 (1). Outdoors, powdery mildew was first reported on rhododendron in Europe in 1981. M. azaleae has been identified as the causal agent of rhododendron powdery mildew in the United Kingdom, Germany, and Switzerland (1). In most cases the disease is readily controlled by regular application of fungicides commonly used against powdery mildews of other crops. Reference: (1) A. J. Inman et al. J. Phytopathol. 148:17, 2000.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 451-451 ◽  
Author(s):  
C. Nischwitz ◽  
G. Newcombe

Caragana arborescens Lam. is an exotic ornamental that can also be somewhat invasive. In July 2002, powdery mildew was observed on C. arborescens along the Idaho-Washington border in Moscow and Pullman, respectively. Leaves were colonized as soon as they emerged, and entire plants were affected. The fungus covered both leaf surfaces, but cleistothecia were more abundant on abaxial surfaces. The mean diameter of the cleistothecia was 91 (± 9.8) μm. Short-stalked asci averaged 67 (± 7.1) μm × 37 (± 5.2) μm, and the ascospores were 21 (± 2.0) μm × 13 (± 0.8) μm. There are records of four species of Microsphaera on C. arborescens in Europe and Asia. The measurements fit the description of Microsphaera palczewskii Jacz. (1), and the identification was confirmed by comparison with specimens of this fungus on C. arborescens from Sweden (U.S. National Fungus Collections: BPI 749057 and 749058). Specimens of M. grossulariae (Wallr. ex Fr.) Lev. on Ribes divaricatum Dougl. from California (BPI 558266) were also examined, but the cleistothecial appendages were distinctly different from those of the Idaho specimens. To our knowledge, this is the first reported occurrence in North America of powdery mildew on C. arborescens and the first report of M. palczewskii. The latter may have been introduced recently into North America because there are areas in southern Canada and the northern United States in which C. arborescens is unaffected by powdery mildew. Interestingly, it is only in recent decades that M. palczewskii has spread from Asia into Europe (2). Now, host and parasite have been reunited in North America as well. Specimens have been deposited in the U.S. National Fungus Collections (BPI). References: (1) U. Braun. A monograph of the Erysiphales (powdery mildews) J. Cramer, Berlin-Stuttgarg, 1987. (2) S. Huhtinen et al. Karstenia 41:31, 2001.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1169-1169 ◽  
Author(s):  
E. Kassai-Jáger ◽  
L. Kiss ◽  
Z. Váczy ◽  
K. Z. Váczy

Lemon balm is a well-known perennial, medicinal and culinary herb, and also a melliferous plant that is grown commercially in many parts of the world including Hungary. In October 2009, symptoms of powdery mildew infection were observed on lemon balm plants grown in several gardens in Budapest, Maklár, and Eger, Hungary, as well as in Ghenci, Romania. Abundant mycelium and conidial sporulation was observed on both leaf surfaces and stems. Conidia were produced in chains and were ellipsoid-ovoid to subcylindrical, measured 29 to 44 × 15 to 18 μm, and germinated with germ tubes produced apically or subapically on conidia. The basal septa of the conidiophores were sometimes displaced from the point of branching. The width of their foot cells increased from base to top and sometimes enlarged considerably at a particular point. Hyphal appressoria were nipple shaped. On the basis of these characteristics, the pathogen was identified as an Oidium sp. belonging to the subgenus Reticuloidium. The teleomorph stage was not found. To precisely identify the pathogen, DNA was extracted from mycelia collected from single leaves collected in Budapest and Ghenci with a Qiagen (Valencia, CA) DNeasy Plant Kit. The internal transcribed spacer (ITS) sequences of the nrDNA were amplified and sequenced as described in Jankovics et al. (3). The two ITS sequences, deposited in GenBank under Accession Nos. HM156493 and HM156494, were identical to several ITS sequences of Golovinomyces biocellatus, such as AB307675, AF011291, and EU035602. Thus, the pathogen was identified as G. biocellatus based on the host plant species, anamorph morphology, and ITS sequence. It was clearly distinguished from Neoerysiphe galeopsidis, another powdery mildew species known to infect lemon balm in Europe (1). Specimens were deposited under Accession Nos. HAL 2369F and HAL 2370F at the Herbarium of Martin Luther University, Halle, Germany. Pathogenicity tests were carried out in cabinets within a controlled environment as described for other powdery mildews in Jankovics et al. (3) using five potted healthy lemon balm plants bought from a nursery. The first powdery mildew colonies appeared 7 to 10 days after inoculation, and 2 to 3 weeks later, nearly all the leaves and stems of the three inoculated plants became covered with powdery mildew mycelium. Light microscopy confirmed that the pathogen was the anamorph of G. biocellatus. The two noninoculated plants remained healthy. This confirmed the pathogenicity of the fungus collected from the field to lemon balm. G. biocellatus has long been known to infect lemon balm in some European countries and elsewhere (1), but was not listed as a pathogen of this plant species in Hungary (4). However, it was reported from Romania, a neighboring country, more than 30 years ago (2). This suggests that G. biocellatus might have occurred in Hungary on lemon balm during the past decades without being reported in the literature. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) O. Constantinescu and G. Negrean. Sydowia 29:75, 1976-77. (3) T. Jankovics et al. Phytopathology 98:529, 2008. (4) Sz. Nagy and L. Kiss. Acta Phytopathol. Entomol. Hung. 41:79, 2006.


Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 176-176 ◽  
Author(s):  
L. Vajna ◽  
L. Kiss

Callery pear (Pyrus calleryana Decne.) is native to Asia and its varieties are planted as ornamentals in urban areas worldwide. It is also used as a source of resistance to fireblight in some breeding programs. In April 2007, symptoms of powdery mildew infection were observed on the foliage of almost every P. calleryana cv. Chanticleer tree planted along a 1.5-km road in Budapest, Hungary. These trees were planted 5 to 6 years ago and were the first callery pears used as ornamentals in Hungary. Powdery mildew infections were also detected on P. calleryana trees planted in other parts of the city. White powdery mildew mycelium appeared on the lower and sometimes upper leaf surfaces, especially on young shoots, and caused chlorotic spots on the upper leaf surfaces and severe distortions of leaves. The spread of the infection was monitored between April and August of 2007 in several sample sites. More than 100 trees that were examined became heavily infected by May 2007. Powdery mildew conidiophores were typical of the genus Oidium subgen. Fibroidium, the anamorph of the teleomorph genus Podosphaera (2). Conidia developed in chains, contained fibrosin bodies, germinated at one of their ends with germ tubes terminating in unlobed appressoria, and measured 16 to 27 × 10 to 15 μm. Hyphal appressoria were nipple shaped or inconspicuous. The teleomorph was not found. To precisely identify the pathogen, DNA was extracted from conidia collected with a sterile brush from a single leaf using a Qiagen DNeasy Plant Kit (Hilden, Germany), and the internal transcribed spacer (ITS) sequence of the ribosomal DNA was amplified and determined as described by Szentiványi et al. (3). The ITS sequence, deposited in GenBank under Accession No. EU148597, was identical to those determined in Podosphaera leucotricha (Ell. & Ev.) Salmon collected from apple in Australia (GenBank Accession No. AF073353) and Canada (GenBank Accession No. AY157844) and also from pear in Canada (GenBank Accession No. AY157845). Thus, the pathogen was identified as Podosphaera leucotricha on the basis of the host genus, morphology of the anamorph, and ITS sequence. Specimens were deposited under Accession No. BPI878262 at the U.S. National Fungus Collection. To our knowledge, Podosphaera leucotricha has not been reported on P. calleryana in any parts of the world so far. An Oidium sp. infecting this plant in Australia was listed by Amano (1), but the exact identity of that fungus is not known. Thus, this is the first report of an identified powdery mildew fungus on P. calleryana. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun et al. Pages 13-55 in: The Powdery Mildews: A Comprehensive Treatise. R. R Bélanger et al., eds. American Phytopathological Society, St Paul, MN, 2002. (3) O. Szentiványi et al. Mycol. Res. 109:429, 2005.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 313-313 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
J. Rossi ◽  
M. L. Gullino

Hedera helix L. (Araliaceae) is a common ornamental species that is able to grow in shaded areas and is often used in parks and gardens. During the fall of 2006, severe outbreaks of a previously unknown powdery mildew were observed in several gardens in Liguria (northern Italy). Both surfaces of young leaves of affected plants were covered with dense, white mycelia and conidia. As the disease progressed, infected leaves turned yellow and dropped. Mycelia and conidia were also observed on young stems. Conidia were hyaline, cylindrical, borne singly, and measured 38 to 51 × 12 to 18 (average 42 × 16) μm. Single germ tubes, moderately long (average 26 μm), developed at the end of conidia. Appressoria of germ tubes and hyphae were lobed (three to four lobes). Conidiophores, 68 to 82 × 7 to 8 (average75 × 8) μm, showed foot cells measuring 39 to 60 × 7 to 8 (average 52 × 8) μm, followed by one shorter cell measuring 19 to 28 × 8 to 9 (average 23 × 9) μm. Fibrosin bodies were absent. Chasmothecia were numerous, spherical, amber-colored then brown at maturity, with diameters ranging from 97 to 140 (average 120) μm, containing four asci shortly stalked, 57 to 72 × 32 to 51 (average 65 × 41 μm). Ascospores were ellipsoid and measured 24 to 34 × 15 to 20 (average 30 × 17) μm. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 613-bp fragment showed an E-value of 0.0 with Erysiphe heraclei. The nucleotide sequence has been assigned GenBank Accession No. EU 010381. In GenBank, our nucleotide sequence shows an E-value of 0.0 also with E. betae. However, the comparison of appressorium shape and germ tube length observed on our microorganism with those described for E. betae by Braun (2) suggests that the causal agent of the powdery mildew reported on ivy is E. heraclei. Furthermore, symptoms described on our host, appressorium shape and the length of conidiophores, are different from those of Oidium araliacearum described by Braun (2) on Araliaceae. Inoculations were made by gently pressing diseased leaves onto leaves of five healthy H. helix plants. Three noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a greenhouse at temperatures between 21 and 25°C. After 15 days, typical powdery mildew colonies developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on H. helix caused by E. heraclei in Italy. A powdery mildew caused by E. cichoracearum was previously reported on H. canariensis var. azorica in Italy (3), while a powdery mildew on H. helix caused by O. araliacearum and Golovinomyces orontii, respectively, were observed in the United States (4) and Germany. Herbarium specimens of this disease are available at AGROINNOVA Collection, University of Torino, Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. A Monograph of the Erysiphaceae (Powdery Mildews). Cramer, Berlin, Germany, 1987. (3) C. Nali. Plant Dis. 83:198, 1999. (4) G. S. Saenz and S. T. Koike. Plant Dis. 82:127, 1998.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 995-995 ◽  
Author(s):  
J. P. Ding ◽  
D. L. Pei ◽  
Q. C. Zhang ◽  
Q. C. Hong ◽  
Y. Z. Ren ◽  
...  

Herba eupatorii, one of the most important Chinese medicinal herbs, belongs to the Asteraceae family. In June 2012, a previously unknown disease, tentatively identified as powdery mildew, was observed on H. eupatorii growing in Shangqiu, in eastern Henan Province, China. Symptoms began as white mycelium partially covering upper leaf surfaces; as the disease progressed, it spread to cover entire leaf surfaces. The infected leaves became yellow and necrotic at advanced stages of infection. Specimens consisting of infected leaves were maintained at the Plant-Microbe Interaction Laboratory at Shangqiu Normal University. Microscopic observations of the morphology of the fungus revealed oval primary conidia measuring 18 to 27 × 15 to 22 μm. A long unbranched germ tube that germinated laterally from the ends of conidia was observed in some samples. Conidiophores were cylindrical, simple unbranched, and composed of a basal cell with a swollen base and three to six barrel-shaped conidia formed in chains, measuring 112 to 180 × 9 to 12 μm. Mycelial appressoria were nipple-shaped. Chasmothecia were not observed in the collected samples. To verify the identity of the fungus, the internal transcribed spacer (ITS) rDNA was amplified with ITS1 and ITS4 primers (3) and sequenced. The sequences were deposited as GenBank Accession No. JX546297. Comparison with sequences in the GenBank database revealed that the ITS sequence was 100% homologous with the sequence of Podosphaera fusca on Calendula officinalis (AB525914) (2) and Syneilesis palmata (AB040349) (1). The ITS sequence analysis verified that the causal agent was P. fusca, which is reported to be a cosmopolitan powdery mildew fungus, parasitic on numerous plant species in the Asteraceae family. Koch's postulates were completed by inoculating healthy H. eupatorii plants with a conidial suspension (prepared in distilled water) of 105 conidia/ml collected from infected plants. Five plants were sprayed until the suspension ran off the leaves, while five additional plants were sprayed with distilled water as a control. Plants were maintained in a climate cell under the following conditions: day, 24°C, 16 h; night, 20°C, 8 h; 85% humidity. After 10 days, inoculated plants developed symptoms similar to those observed in the field, whereas control plants remained healthy. Further examination showed that the inoculated plants were infected by P. fusca. To our knowledge, this is the first report of P. fusca affecting H. eupatorii in China. Because there are no fungicides labeled for use on this plant, the appearance of powdery mildew caused by P. fusca could result in substantial production loss of H. eupatorii. References: (1) T. Hirata et al. Can. J. Bot. 78:1521, 2000. (2) S. Takamatsu et al. Persoonia 24:38, 2010. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 426-426
Author(s):  
K. S. Han ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Chervil (Anthriscus cerefolium (L.) Hoffm.), belonging to the family Apiaceae, is an aromatic annual herb that is native to the Caucasus. It is widely used as a flavoring agent for culinary purposes. This herb was recently introduced in Korea. In April 2013, plants showing typical symptoms of powdery mildew disease were observed in a polyethylene film-covered greenhouse in Seoul, Korea. White mycelium bearing conidia formed irregular patches on leaves and stems. Mycelial growth was amphigenous. Severe infections caused leaf withering and premature senescence. Voucher specimens were deposited in the Korea University Herbarium (KUS). Hyphae were septate, branched, with moderately lobed appressoria. Conidiophores presented 3 to 4 cells and measured 85 to 148 × 7 to 9 μm. Foot-cells of conidiophores were 37 to 50 μm long. Conidia were produced singly, oblong-elliptical to oblong, measured 30 to 50 × 13 to 18 μm with a length/width ratio of 2.0 to 3.3, lacked conspicuous fibrosin bodies, and with angular/rectangular wrinkling of the outer walls. Germ tubes were produced in the subterminal position of conidia. Chasmothecia were not found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) region of rDNA of KUS-F27279 was amplified with primers ITS5 and P3 (4) and sequenced directly. The resulting 561-bp sequence was deposited in GenBank (Accession No. KF111807). A GenBank BLAST search of this sequence showed >99% similarity with those of many E. heraclei isolates, e.g., Pimpinella affinis (AB104513), Anethum graveolens (JN603995), and Daucus carota (EU371725). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted chervil plants. Five non-inoculated plants served as a control treatment. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Chervil powdery mildews caused by E. heraclei have been reported in Europe (Bulgaria, France, Germany, Hungary, Italy, Romania, Switzerland, and the former Soviet Union) and the United States (2,3). To our knowledge, this is the first report of powdery mildew caused by E. heraclei on chervil in Asia as well as in Korea. The plant is cultivated in commercial farms for its edible leaves in Korea. Occurrence of powdery mildew is a threat to quality and marketability of this herb, especially those grown in organic farming where chemical control options are limited. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11, CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication. ARS, USDA. Retrieved July 29, 2013. (3) S. T. Koike and G. S. Saenz. Plant Dis. 88:1163, 2004. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 162-162 ◽  
Author(s):  
I. Y. Choi ◽  
S. S. Cheong ◽  
J. H. Joa ◽  
S. E. Cho ◽  
H. D. Shin

Sechium edule (Jacq.) Sw. (Cucurbitaceae, chayote, mirliton) is native to Mexico and Central America. Several trials have recently been conducted to determine the ability of chayote cultivars to grow under the climatic and soil conditions of South Korea. In April 2013, chayote plants were observed showing typical symptoms of powdery mildew in a glasshouse in Jeju City, Korea. Powdery mildew colonies were circular to irregular, forming white patches on both sides of the leaves. As the disease progressed, entire leaves were covered with white mycelium, followed by leaf withering and premature senescence. The same symptoms were also found on chayote plants in a polyethylene-film-covered greenhouse in Iksan City, Korea, in 2014. Voucher specimens were deposited in the Korea University Herbarium (KUS-F27289, F27422, F28186). Hyphae were flexuous to straight, branched, septate, and 5 to 7 μm wide. Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were straight, 150 to 240 × 10 to 12 μm and produced three to seven immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, cylindric, and 52 to 85 μm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, measured 27 to 36 × 16 to 23 μm with a length/width ratio of 1.3 to 2.0, and had distinct fibrosin bodies. Simple to forked germ tubes were produced from the lateral position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Euoidium anamorph of the genus Podosphaera. Dimensions of foot-cells and conidia were within the ranges provided for P. xanthii (Castagne) U. Braun & Shishkoff, and the length/width ratio of conidia, appressorial characteristics, and conidial germination patterns also conformed to the standard description (2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate KUS-F27289 was amplified with primers ITS1 and ITS4 and sequenced directly. The resulting 473-bp sequence was deposited in GenBank (Accession No. KM657960). A GenBank BLAST search of the Korean isolate showed 99% similarity with P. xanthii isolates from cucurbitaceous hosts (e.g., AB774155 to AB774158, AB040321, JQ340082, etc.). Pathogenicity was confirmed through inoculation tests by gently pressing a diseased leaf onto young leaves of three asymptomatic, potted chayote plants. Three non-inoculated plants were used as controls. Plants were maintained in a greenhouse at 24 to 34°C. Inoculated leaves started to develop symptoms after 5 days, whereas the control plants remained symptomless. The pathogenicity test was carried out twice with similar results. Powdery mildews of chayote caused by Podosphaera species have been reported in Australia, South Africa, Portugal, India, China, and the United States (1,3,4). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on chayote in Korea. Since chayote production was only recently started on a commercial scale in Korea, powdery mildew infections may pose a serious threat to the safe production of this vegetable. References: (1) P. Baiswar et al. Australas. Plant Dis. Notes 3:160, 2008. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab. Online publication, ARS, USDA, Retrieved October 4, 2014. (4) R. Singh et al. Plant Dis. 93:1348, 2009.


Sign in / Sign up

Export Citation Format

Share Document