scholarly journals Integrated Use of Pyraclostrobin and Epoxiconazole for the Control of Fusarium Head Blight of Wheat in Anhui Province of China

Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1495-1500 ◽  
Author(s):  
Yu Chen ◽  
Ai-Fang Zhang ◽  
Tong-Chun Gao ◽  
Yong Zhang ◽  
Wen-Xiang Wang ◽  
...  

Fusarium asiaticum and F. graminearum are the primary causal agents of Fusarium head blight (FHB) of wheat in China. Carbendazim (a benzimadazole fungicide, MBC), has been extensively used for the control of FHB, resulting in severe MBC resistance in China. This article presents the baseline sensitivity of F. asiaticum and F. graminearum isolates from Anhui Province of China to fungicides pyraclostrobin (a quinone outside inhibitor) and epoxiconazole (a sterol demethylation inhibitor). In the presence of salicylhydroxamic acid, the 50% effective concentration (EC50) values for pyraclostrobin in inhibiting mycelial growth of the 126 F. asiaticum isolates and 63 F. graminearum isolates were 0.012 to 0.135 μg/ml and 0.010 to 0.105 μg/ml, and the EC50 values for pyraclostrobin in inhibiting conidium germination of the F. asiaticum and F. graminearum populations were 0.047 to 0.291 and 0.042 to 0.255 μg/ml, respectively. The EC50 values for epoxiconazole in inhibiting mycelial growth of the F. asiaticum and F. graminearum populations were 0.12 to 0.95 and 0.16 to 0.93 μg/ml, respectively. All of the baseline sensitivity curves were unimodal. This study also suggested that there was no cross-resistance between MBC and pyraclostrobin or epoxiconazole. In the protective and curative tests, pyraclostrobin and epoxiconazole applied at 200 and 300 μg/ml exhibited over 75% protective and curative control efficacy in all treatments. In field trials, both pyraclostrobin and epoxiconazole at 225 g a.i./ha provided over 80% efficacy in 2010 and 2011 at both sites where MBC resistance occurred, suggesting excellent activity against FHB. Interestingly, integrated use of pyraclostrobin + epoxiconazole applied at 150 + 150 g a.i./ha provided over 85% efficacy at both sites in 2010 and 2011. Pyraclostrobin and epoxiconazole should be good alternatives to MBC for the control of FHB, and integrated use of these two fungicides might achieve greater efficacy.

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 267-273 ◽  
Author(s):  
Hong-Jie Liang ◽  
Ya-Li Di ◽  
Jin-Li Li ◽  
Hong You ◽  
Fu-Xing Zhu

Sclerotinia sclerotiorum is a cosmopolitan plant pathogen notable for its wide host range. The quinone outside inhibitor (QoI) fungicide pyraclostrobin has not been registered for control of S. sclerotiorum in China. In this study, baseline sensitivity of pyraclostrobin was established based on effective concentration for 50% inhibition of mycelial growth (EC50) values of 153 isolates of S. sclerotiorum collected from five provinces of China and toxicity of alternative oxidase inhibitor salicylhydroxamic acid (SHAM) to S. sclerotiorum was determined. Results showed that the frequency distribution of EC50 values of the 153 isolates was unimodal but with a right-hand tail. The mean EC50 value was 0.1027 μg/ml and the range of EC50 values was 0.0124 to 0.6324 μg/ml. Applied as a preventive fungicide in pot experiments, pyraclostrobin at 5, 15, and 45 μg/ml provided control efficacies of 61, 77, and 100%, respectively. There was no positive cross-resistance between pyraclostrobin and carbendazim or dimethachlon. EC50 values for SHAM against four isolates of S. sclerotiorum were 44.4, 51.8, 54.4, and 68.7 μg/ml. SHAM at 20 μg/ml could significantly increase not only the inhibitory effect of pyraclostrobin on mycelial growth on potato dextrose agar media but also the control efficacy in planta. These results indicated that SHAM should not be added into artificial media in in vitro assay of S. sclerotiorum sensitivity to pyraclostrobin. This has broad implications for assay of sensitivity of fungal pathogen to QoI fungicides.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2602-2615 ◽  
Author(s):  
P. A. Paul ◽  
C. A. Bradley ◽  
L. V. Madden ◽  
F. Dalla Lana ◽  
G. C. Bergstrom ◽  
...  

Field trials were conducted in 17 U.S. states to evaluate the effects of quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicide programs on Fusarium head blight index (IND) and deoxynivalenol (DON) toxin in wheat. Four DMI-only treatments applied at Feekes 10.5.1, five QoI-only treatments applied between Feekes 9 or Feekes 10.5, three QoI+DMI mixtures applied at Feekes 10.5, and three treatments consisting of a QoI at Feekes 9 followed by a DMI at Feekes 10.5.1 were evaluated. Network meta-analytical models were fitted to log-transformed mean IND and DON data and estimated contrasts of log means were used to obtain estimates of mean percent controls relative to the nontreated check as measures of efficacy. Results from the meta-analyses were also used to assess the risk of DON increase in future trials. DMI at Feekes 10.5.1 were the most effective programs against IND and DON and the least likely to increase DON in future trials. QoI-only programs increased mean DON over the nontreated checks and were the most likely to do so in future trials, particularly when applied at Feekes 10.5. The effects of QoI+DMI combinations depended on the active ingredients and whether the two were applied as a mixture at heading or sequentially. Following a Feekes 9 QoI application with a Feekes 10.5.1 application of a DMI reduced the negative effect of the QoI on DON but was not sufficient to achieve the efficacy of the Feekes 10.5.1 DMI-only treatments. Our results suggest that one must be prudent when using QoI treatments under moderate to high risk of FHB, particularly where the QoI is used without an effective DMI applied in combination or in sequence.


Plant Disease ◽  
2020 ◽  
Author(s):  
Jhonatan Barro ◽  
Flávio Martins Santana ◽  
Franklin Jackson Machado ◽  
Maíra Rodrigues Duffeck ◽  
Douglas Lau ◽  
...  

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is best controlled with demethylation inhibitor (DMI) fungicides during flowering. However, the use of premixes of DMI and quinone outside inhibitor (QoI) fungicides to control FHB has increased in Brazil. Data on FHB severity and wheat yields measured in field experiments conducted in Brazil were gathered from both peer- and non-peer-reviewed sources published from 2000 to 2018. After applying selection criteria, 73 field trials from 35 bibliographic sources were identified, among which 50% of the data were obtained from cooperative network trials conducted after 2011. To be included in the analysis, a DMI+QoI premixes or tebuconazole (TEB) were tested in at least 14 trials and three years. Four premixes met the criteria. Estimates of percent control (and respective 95% confidence interval) by a network model fitted to the log of the treatment means ranged from 44.1% (pyraclostrobin + metconazole applied once; 32.4 to 53.7) to 64.3% (pyraclostrobin + metconazole; 58.4 to 69.3); the latter not differing from TEB (59.9%, 53.6 to 65.3). Yield response was statistically similar for pyraclostrobin + metconazole (532.1 kg/ha, 441 to 623) and trifloxystrobin + prothioconazole (494.9 kg/ha, 385 to 551), and both differed statistically from a group composed of TEB (448.2 kg/ha, 342 to 554), trifloxystrobin + TEB (468.2 kg/ha, 385 to 551), azoxystrobin + TEB (462.4 kg/ha, 366 to 558) and pyraclostrobin + metconazole applied once (413.7 kg/ha, 308 to 518). The two categories of FHB index (7% cut off) and yield (3,000 kg/ha cut off), both in the non-treated check, did not explain the heterogeneity in the estimates. Two sequential sprays of TEB or one spray of pyraclostrobin + metconazole as management choices are likely more profitable than DIM+QoI premixes sprayed twice during flowering considering only the fungicide effects on yield.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 272 ◽  
Author(s):  
Chao Xu ◽  
Meixia Li ◽  
Zehua Zhou ◽  
Jiaosheng Li ◽  
Dongming Chen ◽  
...  

Deoxynivalenol (DON) is a class of mycotoxin produced in cereal crops infected with Fusarium graminearum species complex (FGSC). In China, FGSC mainly includes Fusarium asiaticum and F. graminearum. DON belongs to the trichothecenes and poses a serious threat to the safety and health of humans and animals. Succinate dehydrogenase inhibitors (SDHIs) are a class of fungicides that act on succinate dehydrogenase and inhibit the respiration of pathogenic fungi. In this study, the fungicidal activities of five SDHIs, including fluopyram, flutolanil, boscalid, benzovindiflupyr, and fluxapyroxad, against FGSC were determined based on mycelial growth and spore germination inhibition methods. The five SDHIs exhibited better inhibitory activities in spore germination than mycelial growth. Fluopyram exhibited a higher inhibitory effect in mycelial growth and spore germination in comparison to the other four SDHIs. In addition, the biological characteristics of F. asiaticum as affected by the five SDHIs were determined. We found that these five SDHIs decreased DON, pyruvic acid and acetyl-CoA production, isocitrate dehydrogenase mitochondrial (ICDHm) and SDH activities, and NADH and ATP content of F. asiaticum but increased the citric acid content. In addition, TRI5 gene expression was inhibited, and the formation of toxisomes was disrupted by the five SDHIs, further confirming that SDHIs can decrease DON biosynthesis of F. asiaticum. Thus, we concluded that SDHIs may decrease DON biosynthesis of F. asiaticum by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle. Overall, the findings from the study will provide important references for managing Fusarium head blight (FHB) caused by FGSC and reducing DON contamination in F. asiaticum-infected wheat grains.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman ◽  
Qin Tan ◽  
Mohammad Mazharul Karim ◽  
Muhammad Adnan ◽  
Weixiao Yin ◽  
...  

Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including C. fructicola and C. siamense, is a devastating disease of peach. The chemical control has been widely used for years and management failures have increased towards commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance and 26 % were low resistant, all of the C. siamense isolates were low resistant. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin, even they are members of the same quinone outside inhibitor (QoI) fungicide group, and between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for mycelial growth rates were detected between highly resistant and low-resistant isolates of C. fructicola. Molecular characterization of Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the current resistance status of C. fructicola and C. siamense to different fungicides and their future perspectives. Demethylation inhibitor (DMI) fungicides are the best option among different chemicals to control peach anthracnose in China.


2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


2018 ◽  
Vol 164 (1) ◽  
pp. 313-316 ◽  
Author(s):  
Wei Li ◽  
Yunlei Xia ◽  
Haotian Zhang ◽  
Xing Zhang ◽  
Huaigu Chen

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Yabing Duan ◽  
Xian Tao ◽  
Huahua Zhao ◽  
Xuemei Xiao ◽  
Meixia Li ◽  
...  

Fusarium graminearum species complex (FGSC), causing Fusarium head blight (FHB) of wheat, has species-specific geographical distributions in wheat-growing regions. In recent years, benzimidazole resistance of FHB pathogens has been largely widespread in China. Although the demethylation inhibitor fungicide metconazole has been used for FHB control in some countries, no information about metconazole sensitivity of Chinese FHB pathogen populations and efficacy of metconazole in FHB control in China is available. In this study, the sensitivity of FGSC to metconazole was measured with 32 carbendazim-sensitive strains and 35 carbendazim-resistant strains based on mycelial growth. The 50% effective concentration values of 67 strains were normally distributed and ranged from 0.0209 to 0.0838 μg ml−1, with a mean of 0.0481 ± 0.0134 μg ml−1. No significant difference in metconazole sensitivity was observed between carbendazim-sensitive and -resistant populations. An interactive effect of metconazole and phenamacril, a novel cyanoacrilate fungicide approved in China against Fusarium spp., in inhibiting mycelial growth showed an additive interaction at different ratios. Furthermore, field trials to evaluate the effect of metconazole and metconazole + phenamacril treatments in FHB control, deoxynivalenol (DON) production, and grain yields were performed. Compared with the fungicides carbendazim and phenamacril currently used in China, metconazole exhibits a better efficacy for FHB control, DON production, and grain yields, and dramatically reduces use dosages of chemical compounds in the field. The mixture of metconazole and phenamacril at ratios of 2:3 and 1:2 showed the greatest efficacy for FHB control, DON production, and grain yields among all the fungicide treatments but its use dosages were higher in comparison with metconazole alone. In addition, FHB control, grain yields, and DON levels were significantly correlated with each other, showing that visual disease indices can be used as an indicator of grain yields and DON contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after metconazole and phenamacril alone and the mixture of metconazole and phenamacril applications, indicating that metconazole and a mixture of metconazole and phenamacril can be used for carbendazim resistance management of FHB in wheat. Overall, the findings of this study provide important data for resistance management of FHB and reducing DON contamination in wheat grains.


2009 ◽  
Vol 2 (2) ◽  
pp. 193-201 ◽  
Author(s):  
A. Xue ◽  
H. Voldeng ◽  
M. Savard ◽  
G. Fedak

Fusarium head blight (FHB), caused by Gibberella zeae is a harmful disease of wheat. To manage FHB and mycotoxin contamination in wheat, field experiments were conducted from 2007 to 2008 to evaluate a total of 20 selected bioagents for their ability to inhibit perithecial production of G. zeae and for the control of FHB and deoxynivalenol (DON) contamination, in comparison with the registered fungicide Folicur (tebuconazole). All 20 bioagents significantly reduced the perithecial production compared to the untreated control. Clonostachy rosea strain ACM941 was the most effective treatment, reducing the production of perithecia by 63.7% in 2007 and 67.5% in 2008. These effects were significantly better than Folicur fungicide, which reduced perithecial production by 30.4% and 20.5%, for 2007 and 2008, respectively. When sprayed on to wheat heads, seven of the 20 bioagents significantly reduced the FHB index, one reduced Fusarium damaged kernels (FDK), and six reduced DON content in grains in 2007. ACM941 was the only treatment that significantly reduced FHB index, FDK, and DON, by 46.4%, 29.0% and 28.7%, respectively. Among the six bioagents and three formulated products evaluated in two separate field trials in 2008, ACM941 and its formulated product ACM941-CU were the only treatments that significantly reduced FHB index, FDK, and DON. The treatments reduced FHB index by 30.8% and 31.4%, FDK by 17.8% and 43.8%, and DON by 30.8% and 37.1%, for ACM941 and ACM941-CU, respectively. These effects were less marked than those of the Folicur fungicide that reduced FHB index by 98.8%, FDK by 94.2%, and DON by 92.1%. Results of this study suggest that ACM941 is a promising bioagent against G. zeae and may be used as a control measure in organic farming and in an integrated FHB and DON management program for wheat production.


2011 ◽  
Vol 101 (9) ◽  
pp. 1104-1111 ◽  
Author(s):  
Yang Bi ◽  
Xiaolan Cui ◽  
Xiaohong Lu ◽  
Meng Cai ◽  
Xili Liu ◽  
...  

Laboratory experiments were conducted to determine the baseline sensitivity of Phytophthora capsici and its risk for developing resistance to zoxamide. In total, 158 P. capsici isolates were collected from China. All 158 isolates were sensitive to zoxamide, with effective concentrations for 50% inhibition of mycelial growth of 0.023 to 0.383 μg/ml and a mean of 0.114 μg/ml, which showed a skewed unimodal distribution. Zoxamide-resistant mutants of P. capsici were obtained by either treating mycelial culture and zoospores with ultraviolet irradiation or adapting a culture on zoxamide-amended plates. The frequency of resistance selection averaged 1.8 × 10–7. Resistant isolates were also derived by selfing or crossing two sexually compatible isolates, resulting in a mean selection frequency of 0.47. The resistance factor (RF) for zoxamide was 25 to 100 in P. capsici mutants. Through 10 culture transfers, the mutants maintained high levels of RF (between 14 and 134) and had almost equal fitness as their wild-type parents in mycelial growth, sporulation, and virulence. There was no cross resistance between zoxamide and either flumorph, metalaxyl, azoxystrobin, or etridiazole. Based on the results above, P. capsici can develop resistance to zoxamide, and the risk is predicted to be moderate in nature.


Sign in / Sign up

Export Citation Format

Share Document