scholarly journals First Report of Rhizoctonia solani AG 2-1 Causing Stem Canker of Potato (Solanum tuberosum) in Idaho

Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2130-2130
Author(s):  
M. R. Murdock ◽  
J. W. Woodhall ◽  
R. Maggard ◽  
S. Keith ◽  
M. Harrington ◽  
...  
Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1701-1701 ◽  
Author(s):  
J. W. Woodhall ◽  
P. S. Wharton ◽  
J. C. Peters

The fungus Rhizoctonia solani is the causal agent of stem canker and black scurf of potato (Solanum tuberosum). R. solani is a species complex consisting of 13 anastomosis groups (AGs) designated AG1 to 13 (2, 3). Stems of potato (cv. Russet Norkotah) with brown lesions were recovered from one field in Kimberley, Idaho, in August 2011. Using previously described methods (3), R. solani was recovered from the symptomatic stems and one representative isolate (J15) was selected for further characterization. Sequencing of the rDNA ITS region of isolate J15 was undertaken as previously described (3) and the resulting rDNA ITS sequence (HE667745) was 99% identical to sequences of other AG4 HG-II isolates in GenBank (AF354072 and AF354074). Pathogenicity of the isolate was determined by conducting the following experiment. Mini-tubers of cv. Santé were planted individually in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were either inoculated with J15, an isolate of AG3-PT (Rs08), or were not inoculated. Each treatment was replicated four times. Inoculum consisted of five 10-mm-diameter potato dextrose agar plugs, fully colonized by the appropriate isolate, placed in the compost approximately 40 mm above each seed tuber. Pots were held in a controlled environment room at 21°C with 50% relative humidity and watered as required. After 21 days, plants were assessed for disease. No symptoms of the disease were present in non-inoculated plants. In the Rs08 (AG3-PT) inoculated plants, all stems displayed large brown lesions and 20% of the stems had been killed. No stem death was observed in J15 (AG4 HG-II) inoculated plants. However, brown lesions were observed in three of the four J15 (AG4 HG-II) inoculated plants. These lesions were less severe than in plants inoculated with the Rs08(AG3-PT) inoculated plants and were present in 40% of the main stems. In the J15 (AG4 HG-II) inoculated pots, R. solani AG4 HG-II was reisolated from the five symptomatic stems, thereby satisfying Koch's postulates. To our knowledge, this is the first report of AG4 HG-II causing disease on potatoes in Idaho. AG4 has been isolated from potato previously from North Dakota, although the subgroup was not identified (1). The only previous report where AG4 HG-II was specifically determined to cause disease on potato was in Finland, but the isolate could not be maintained and Koch's postulates were not completed (3). The present study shows that AG4 HG-II can cause stem disease in potatoes, although disease does not develop as severely or as consistently as for AG3-PT. However, as demonstrated with isolates of AG2-1 and AG5, even mild stem infection can reduce tuber yield by as much as 12% (4). AG4 HG-II is a pathogen of sugar beet in Idaho, which was grown previously in this field. This history may have contributed to high levels of soilborne inoculum required to produce disease on potato. References: (1) N. C. Gudmestad et al. Page 247 in: J. Vos et al. eds. Effects of Crop Rotation on Potato Production in the Temperate Zones. Kluwer, Dordrecht, Netherlands, 1989. (2) M. J. Lehtonen et al. Agric. Food Sci. 18:223, 2009. (3) J. W. Woodhall et al. Plant Pathol. 56:286, 2007. (4) J. W. Woodhall et al. Plant Pathol. 57:897, 2008.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2126-2126
Author(s):  
S. Yang ◽  
Y. Kong ◽  
F. Min ◽  
J. Zhang ◽  
L. Wang ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 840-840
Author(s):  
Y. G. Yang ◽  
X. H. Wu

Black scurf and stem canker on potato (Solanum tuberosum L.), caused by Rhizoctonia solani, is an important disease throughout the world. Isolates of R. solani AG3 are the principal cause of these diseases on potato (2). In August 2011, at the tuber bulking growth stage, symptoms typically associated stem canker, including dark brown stem lesions, were observed on 20% of potato plants collected from 23 locations (about 2,000 ha) in Gansu Province, northwest China. Stem pieces (each 5 mm long) taken from the margins of the healthy and diseased tissues were surface-disinfected with 0.5% NaOCl for 2 min, rinsed with sterilized water, dried, then placed on potato dextrose agar (PDA) at 25°C in the dark. Twenty-nine fungal isolates taken from single hyphal tips were identified as R. solani based on morphological traits, including mycelium branched at right angles with a septum near the branch and a slight constriction at the branch base. Hyphal cells were determined to be multinucleate (4 to 10 nuclei/cell) when stained with 4′-6-diamidino-2-phenylindole (DAPI). Anastomosis groups were determined by pairing with reference strains (kindly provided by N. Kondo, Hokkaido University, Japan), and three isolates (designed GS-15, GS-24, and GS-25) anastomosed with isolates of R. solani AG4. The internal transcribed spacer (ITS) region of rDNA was amplified from genomic DNA of each of the three isolates with primers ITS1 and ITS4. The resulting sequences (GenBank Accession Nos. JX843818, JX843819, and JX843820) were 100% identical to those of >10 R. solani AG4 HGII isolates (e.g., HQ629873.1; isolate ND13). Therefore, based on the anastomosis assay and molecular characteristics, the three isolates were identified as R. solani AG4 HGII. To determine pathogenicity of the AG4 HGII isolates, potato seed tubers (cv. Favorita) with 3 to 5 mm long sprouts were inoculated with wheat seeds (sterilized by autoclaving twice at 121°C for 1 h with a 24 h interval between autoclavings) colonized with each isolate (1). One sprouted tuber was planted in a sterilized plastic pot (1 liter) with a single colonized wheat seed placed 10 mm above the uppermost sprout tip in a sand/sawdust mixture (1:2 v/v, with dry heat sterilization at 161°C for 4 h before use). Plants were incubated in a glasshouse maintained at 25 to 27°C. The test was performed on 20 plants for each isolate, and the experiment was repeated. After 3 weeks, control plants inoculated with sterilized wheat seeds remained asymptomatic, and no Rhizoctonia spp. were isolated from these plants, whereas all inoculated plants showed symptoms of stem canker. R. solani AG4 HGII was reisolated consistently from symptomatic stems, and the identity of the reisolates confirmed by the morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. Potato stem canker caused by R. solani AG4 HGII was reported previously in the United States (3). To our knowledge, this is the first report of R. solani AG4 HGII causing stem canker on potato in Gansu Province, the main potato-producing area of China. R. solani AG4 HGII can cause sheath blight on corn in China (4), which is commonly grown in rotation with potato. This rotation could increase the risk of soilborne infection to either crop by R. solani AG4 HGII. References: (1) M. J. Lehtonen et al. Plant Pathol. 57:141, 2008. (2) L. Tsror. J. Phytopathol. 158:649, 2010. (3) J. W. Woodhall et al. Plant Dis. 96:1701, 2012. (4) X. Zhou et al. J. Shenyang Agric. Univ. 43:33, 2012.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3260-3260
Author(s):  
C. S. Chen ◽  
Y. F. Wu ◽  
C. Y. Chen

Plant Disease ◽  
2020 ◽  
pp. PDIS-06-20-1253
Author(s):  
Shijuan Li ◽  
Kaixuan Zhang ◽  
Muhammad Khurshid ◽  
Yu Fan ◽  
Bingliang Xu ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 460-460 ◽  
Author(s):  
J. W. Woodhall ◽  
A. R. Belcher ◽  
J. C. Peters ◽  
W. W. Kirk ◽  
P. S. Wharton

Rhizoctonia solani is an important pathogen of potato (Solanum tuberosum) causing qualitative and quantitative losses. It has been associated with black scurf and stem canker. Isolates of the fungus are assigned to one of 13 known anastomosis groups (AGs), of which AG3 is most commonly associated with potato disease (2,4). In August 2011, diseased potato plants originating from Rupert, ID (cv. Western Russet) and Three Rivers, MI (cv. Russet Norkotah) were received for diagnosis. Both samples displayed stem and stolon lesions typically associated with Rhizoctonia stem canker. The presence of R. solani was confirmed through isolation as previously described (4) and the Idaho and Michigan isolates were designated J11 and J8, respectively. AG was determined by sequencing the rDNA internal transcribed spacer (ITS) region using primers ITS5 and ITS4 (3). The resulting sequences of the rDNA ITS region of isolates J8 and J11 (GenBank Accession Nos. HE608839 and HE608840, respectively) were between 97 and 100% identical to that of other AG2-2IIIB isolates present in sequence databases (GenBank Accession Nos. FJ492075 and FJ492170, respectively). Koch's postulates were confirmed for each isolate by carrying out the following protocol. Each isolate was cultured on potato dextrose agar for 14 days. Five 10-mm agar plugs were then placed on top of seed tubers (cv. Maris Piper) in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were held in a controlled environment room at 18°C with 50% relative humidity and watered as required. After 21 days, plants were removed and assessed for disease. Typical Rhizoctonia stem lesions were observed and R. solani was successfully reisolated from symptomatic material. To our knowledge, this is the first report of AG2-2IIIB causing disease on potatoes in the United States. In the United States, AGs 2-1, 3, 4, 5, and 9 have all been previously implicated in Rhizoctonia potato disease (2). AG2-2IIIB should now also be considered a potato pathogen in the United States. Knowledge of which AG is present is invaluable when considering a disease management strategy. AG2-2IIIB is a causal agent of sugar beet (Beta vulgaris) root rot in Idaho (1). Sugar beet is commonly grown in crop rotation with potato and such a rotation could increase the risk of soilborne infection to either crop by AG2-2IIIB. References: (1) C. A. Strausbaugh et al. Can. J. Plant Pathol. 33:210, 2011. (2) L. Tsror. J. Phytopatol. 158:649, 2010. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990. (4) J. W.Woodhall et al. Plant Pathol. 56:286, 2007.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1579-1579 ◽  
Author(s):  
Y. Yang ◽  
X. Wu

Potato (Solanum tuberosum L.) is grown worldwide as a major food crop. Potato stem canker is an important disease mainly caused by Rhizoctonia solani AG-3 (4). In 2011, samples of potato stem canker were collected from 26 sites in Heilongjiang Province, northeast China. Stem fragments taken from the margins of the healthy and diseased tissues were surface disinfected with 0.5% NaOCl for 2 min, rinsed with sterile water, then placed on potato dextrose agar (PDA) at 25°C in the dark. Twenty-two fungal isolates taken from single hyphal tips were identified as R. solani based on morphological traits. Colonies were light brown with abundant growth of mycelia and produced brown, irregular sclerotia after 20 days on PDA. Mycelium was branched at right angles with a septum near the branch and a slight constriction at the branch base. Hyphal cells were determined to be multinucleate (five to 13 nuclei per cell) when stained with 4′-6-diamidino-2-phenylindole (DAPI). Anastomosis groups were determined by pairing with reference strains (kindly provided by N. Kondo, Hokkaido University, Japan) (1), and six out of 22 isolates anastomosed with R. solani AG-5. The internal transcribed spacer (ITS) region of rDNA was amplified from genomic DNA of the AG-5 isolates with primers ITS1 and ITS4. The ITS sequences (GenBank Accession Nos. JQ946291 to JQ946296) were 99% identical to R. solani isolate AG-5 ND1 (GenBank Accession No. HQ629863). Therefore, based on molecular characteristics and the anastomosis assay, these six isolates were confirmed to be R. solani AG-5. To determine the pathogenicity of R. solani AG-5 isolates, potato seed tubers (cv. Favorita) with 3- to 5-mm sprouts were inoculated with wheat seeds (sterilized by autoclaving twice at 121°C for 1 h with a 24-h interval) colonized with each isolate (2). Wheat seeds were placed 10 mm above the uppermost sprout tip (one seed per sprout). Plants were incubated in glasshouse conditions maintained at 25 to 27°C. After 3 weeks, all inoculated plants showed symptoms of potato stem canker disease, whereas control plants inoculated with sterilized wheat seeds remained healthy. R. solani AG-5 was consistently reisolated from symptomatic stems, and the identity was confirmed by morphological and molecular characteristics as previously described, fulfilling Koch's postulates. Potato stem canker caused by R. solani AG-5 was previously detected in Australia, South Africa, Finland, and Japan (3). However, to our knowledge, this is the first report of R. solani AG-5 on potato in China. Besides previously reported AGs 1, 3, and 4 implicated in Rhizoctonia disease in China, AG 5 should also be taken into account when designing programs for disease management in potato. References: (1) W. C. Kronland and M. E. Stanghellini. Phytopathology 78:820, 1988. (2) M. J. Lehtonen et al. Plant Pathol. 57:141, 2008. (3) M. J. Lehtonen et al. J. Agric. Food Sci. 18:223, 2009. (4) L. Tsror. J. Phytopathol. 158:649, 2010.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1241-1241
Author(s):  
X. Y. Zhang ◽  
X. M. Zhang ◽  
H. H. Jiang ◽  
J. J. Hao

Sign in / Sign up

Export Citation Format

Share Document