scholarly journals First Report of Rhizoctonia solani AG2-2IIIB Infecting Potato Stems and Stolons in the United States

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 460-460 ◽  
Author(s):  
J. W. Woodhall ◽  
A. R. Belcher ◽  
J. C. Peters ◽  
W. W. Kirk ◽  
P. S. Wharton

Rhizoctonia solani is an important pathogen of potato (Solanum tuberosum) causing qualitative and quantitative losses. It has been associated with black scurf and stem canker. Isolates of the fungus are assigned to one of 13 known anastomosis groups (AGs), of which AG3 is most commonly associated with potato disease (2,4). In August 2011, diseased potato plants originating from Rupert, ID (cv. Western Russet) and Three Rivers, MI (cv. Russet Norkotah) were received for diagnosis. Both samples displayed stem and stolon lesions typically associated with Rhizoctonia stem canker. The presence of R. solani was confirmed through isolation as previously described (4) and the Idaho and Michigan isolates were designated J11 and J8, respectively. AG was determined by sequencing the rDNA internal transcribed spacer (ITS) region using primers ITS5 and ITS4 (3). The resulting sequences of the rDNA ITS region of isolates J8 and J11 (GenBank Accession Nos. HE608839 and HE608840, respectively) were between 97 and 100% identical to that of other AG2-2IIIB isolates present in sequence databases (GenBank Accession Nos. FJ492075 and FJ492170, respectively). Koch's postulates were confirmed for each isolate by carrying out the following protocol. Each isolate was cultured on potato dextrose agar for 14 days. Five 10-mm agar plugs were then placed on top of seed tubers (cv. Maris Piper) in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were held in a controlled environment room at 18°C with 50% relative humidity and watered as required. After 21 days, plants were removed and assessed for disease. Typical Rhizoctonia stem lesions were observed and R. solani was successfully reisolated from symptomatic material. To our knowledge, this is the first report of AG2-2IIIB causing disease on potatoes in the United States. In the United States, AGs 2-1, 3, 4, 5, and 9 have all been previously implicated in Rhizoctonia potato disease (2). AG2-2IIIB should now also be considered a potato pathogen in the United States. Knowledge of which AG is present is invaluable when considering a disease management strategy. AG2-2IIIB is a causal agent of sugar beet (Beta vulgaris) root rot in Idaho (1). Sugar beet is commonly grown in crop rotation with potato and such a rotation could increase the risk of soilborne infection to either crop by AG2-2IIIB. References: (1) C. A. Strausbaugh et al. Can. J. Plant Pathol. 33:210, 2011. (2) L. Tsror. J. Phytopatol. 158:649, 2010. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990. (4) J. W.Woodhall et al. Plant Pathol. 56:286, 2007.

Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1701-1701 ◽  
Author(s):  
J. W. Woodhall ◽  
P. S. Wharton ◽  
J. C. Peters

The fungus Rhizoctonia solani is the causal agent of stem canker and black scurf of potato (Solanum tuberosum). R. solani is a species complex consisting of 13 anastomosis groups (AGs) designated AG1 to 13 (2, 3). Stems of potato (cv. Russet Norkotah) with brown lesions were recovered from one field in Kimberley, Idaho, in August 2011. Using previously described methods (3), R. solani was recovered from the symptomatic stems and one representative isolate (J15) was selected for further characterization. Sequencing of the rDNA ITS region of isolate J15 was undertaken as previously described (3) and the resulting rDNA ITS sequence (HE667745) was 99% identical to sequences of other AG4 HG-II isolates in GenBank (AF354072 and AF354074). Pathogenicity of the isolate was determined by conducting the following experiment. Mini-tubers of cv. Santé were planted individually in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were either inoculated with J15, an isolate of AG3-PT (Rs08), or were not inoculated. Each treatment was replicated four times. Inoculum consisted of five 10-mm-diameter potato dextrose agar plugs, fully colonized by the appropriate isolate, placed in the compost approximately 40 mm above each seed tuber. Pots were held in a controlled environment room at 21°C with 50% relative humidity and watered as required. After 21 days, plants were assessed for disease. No symptoms of the disease were present in non-inoculated plants. In the Rs08 (AG3-PT) inoculated plants, all stems displayed large brown lesions and 20% of the stems had been killed. No stem death was observed in J15 (AG4 HG-II) inoculated plants. However, brown lesions were observed in three of the four J15 (AG4 HG-II) inoculated plants. These lesions were less severe than in plants inoculated with the Rs08(AG3-PT) inoculated plants and were present in 40% of the main stems. In the J15 (AG4 HG-II) inoculated pots, R. solani AG4 HG-II was reisolated from the five symptomatic stems, thereby satisfying Koch's postulates. To our knowledge, this is the first report of AG4 HG-II causing disease on potatoes in Idaho. AG4 has been isolated from potato previously from North Dakota, although the subgroup was not identified (1). The only previous report where AG4 HG-II was specifically determined to cause disease on potato was in Finland, but the isolate could not be maintained and Koch's postulates were not completed (3). The present study shows that AG4 HG-II can cause stem disease in potatoes, although disease does not develop as severely or as consistently as for AG3-PT. However, as demonstrated with isolates of AG2-1 and AG5, even mild stem infection can reduce tuber yield by as much as 12% (4). AG4 HG-II is a pathogen of sugar beet in Idaho, which was grown previously in this field. This history may have contributed to high levels of soilborne inoculum required to produce disease on potato. References: (1) N. C. Gudmestad et al. Page 247 in: J. Vos et al. eds. Effects of Crop Rotation on Potato Production in the Temperate Zones. Kluwer, Dordrecht, Netherlands, 1989. (2) M. J. Lehtonen et al. Agric. Food Sci. 18:223, 2009. (3) J. W. Woodhall et al. Plant Pathol. 56:286, 2007. (4) J. W. Woodhall et al. Plant Pathol. 57:897, 2008.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 840-840
Author(s):  
Y. G. Yang ◽  
X. H. Wu

Black scurf and stem canker on potato (Solanum tuberosum L.), caused by Rhizoctonia solani, is an important disease throughout the world. Isolates of R. solani AG3 are the principal cause of these diseases on potato (2). In August 2011, at the tuber bulking growth stage, symptoms typically associated stem canker, including dark brown stem lesions, were observed on 20% of potato plants collected from 23 locations (about 2,000 ha) in Gansu Province, northwest China. Stem pieces (each 5 mm long) taken from the margins of the healthy and diseased tissues were surface-disinfected with 0.5% NaOCl for 2 min, rinsed with sterilized water, dried, then placed on potato dextrose agar (PDA) at 25°C in the dark. Twenty-nine fungal isolates taken from single hyphal tips were identified as R. solani based on morphological traits, including mycelium branched at right angles with a septum near the branch and a slight constriction at the branch base. Hyphal cells were determined to be multinucleate (4 to 10 nuclei/cell) when stained with 4′-6-diamidino-2-phenylindole (DAPI). Anastomosis groups were determined by pairing with reference strains (kindly provided by N. Kondo, Hokkaido University, Japan), and three isolates (designed GS-15, GS-24, and GS-25) anastomosed with isolates of R. solani AG4. The internal transcribed spacer (ITS) region of rDNA was amplified from genomic DNA of each of the three isolates with primers ITS1 and ITS4. The resulting sequences (GenBank Accession Nos. JX843818, JX843819, and JX843820) were 100% identical to those of >10 R. solani AG4 HGII isolates (e.g., HQ629873.1; isolate ND13). Therefore, based on the anastomosis assay and molecular characteristics, the three isolates were identified as R. solani AG4 HGII. To determine pathogenicity of the AG4 HGII isolates, potato seed tubers (cv. Favorita) with 3 to 5 mm long sprouts were inoculated with wheat seeds (sterilized by autoclaving twice at 121°C for 1 h with a 24 h interval between autoclavings) colonized with each isolate (1). One sprouted tuber was planted in a sterilized plastic pot (1 liter) with a single colonized wheat seed placed 10 mm above the uppermost sprout tip in a sand/sawdust mixture (1:2 v/v, with dry heat sterilization at 161°C for 4 h before use). Plants were incubated in a glasshouse maintained at 25 to 27°C. The test was performed on 20 plants for each isolate, and the experiment was repeated. After 3 weeks, control plants inoculated with sterilized wheat seeds remained asymptomatic, and no Rhizoctonia spp. were isolated from these plants, whereas all inoculated plants showed symptoms of stem canker. R. solani AG4 HGII was reisolated consistently from symptomatic stems, and the identity of the reisolates confirmed by the morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. Potato stem canker caused by R. solani AG4 HGII was reported previously in the United States (3). To our knowledge, this is the first report of R. solani AG4 HGII causing stem canker on potato in Gansu Province, the main potato-producing area of China. R. solani AG4 HGII can cause sheath blight on corn in China (4), which is commonly grown in rotation with potato. This rotation could increase the risk of soilborne infection to either crop by R. solani AG4 HGII. References: (1) M. J. Lehtonen et al. Plant Pathol. 57:141, 2008. (2) L. Tsror. J. Phytopathol. 158:649, 2010. (3) J. W. Woodhall et al. Plant Dis. 96:1701, 2012. (4) X. Zhou et al. J. Shenyang Agric. Univ. 43:33, 2012.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1058-1058 ◽  
Author(s):  
W. L. Bruckart ◽  
A. S. McClay ◽  
S. Hambleton ◽  
R. Tropiano ◽  
G. Hill-Rackette

Rust disease on common groundsel was independently collected from two backyard gardens in Alberta, Canada during 2005, the first on September 11 in Sherwood Park (53.542°N, 113.262°W) and the second on September 18 in Edmonton (53.463°N, 113.593°W). Leaves of each specimen had clusters of orange, cup-shaped aecia, bordered by recurved peridia, the principal macroscopic signs of disease. Infected plants had twisted stems and deformed leaves. Spores of isolates from the two locations were (mean diameter [± s.d.; range]) 14.6 (± 1.4; 11.4 to 18.9) × 12.5 (± 1.1; 9.1 to 16.2) μm, orange, oval or angular, and many had refractive granules (3). Genomic DNA was extracted from small leaf pieces with multiple aecia, and the complete internal transcribed spacer (ITS) region of the rust was sequenced from PCR products. The sequences determined for a representative specimen from each location were identical, including two areas of ambiguity in the ITS1 spacer region. At position 7 were two overlapping peaks (A and C), and near position 130, sequencing failed because of a suspected insertion/deletion in some ITS copies. Difficulties of sequencing through this cytosine-rich area were reported by Littlefield et al. (3). Data from cloned PCR products confirmed the presence of two ITS genotypes in each DNA extract, one identical to a sequence published for Puccinia lagenophorae on Senecio vulgaris from the United Kingdom (GenBank Accession No. AY808060 (2), and the other identical to a sequence from the United States (GenBank Accession No. AY852264) (3). They differ by an A/C transversion at position 7 and an indel, an 8/9 base poly-C run beginning at position 130. Telia and teliospores were not observed in any of the 2005 samples (some collected as late as November) or in the 2006 Edmonton site samples. Identification of the pathogen as P. lagenophorae was based on host plant symptoms (3) and molecular characters. The original source of inoculum for these infections is unknown, but on December 5, 2006, diseased specimens with sporulating aecia were found beneath 45 cm of snow at the Edmonton location, in a garden area that had not been weeded during the summer. There is reported evidence that teliospores are not functional and that P. lagenophorae overwinters on infected plants that develop aecia in the spring (1). Specimens have been deposited at the Arthur Herbarium, Purdue University, West Lafayette, IN (Vouchers PUR N5414–N5417) and the National Mycological Herbarium of Canada, Ottawa, ON (Vouchers DAOM 237844, 237845, 237961, 237962, 237982, and 237990). The two cloned variants of the ITS sequence were deposited in GenBank (Accession Nos. EF212446 and EF212447). To our knowledge, this is the first report of groundsel rust caused by P. lagenophorae in Canada (G. Barron, personal communication, has images from Guelph in 2004 but no specimens were examined or preserved). Groundsel rust has been found at several locations in the United States (3) and has been reported on more than 60 species in several genera (4). Questions remain about the amount of damage that P. lagenophorae will cause to groundsel in North America and whether it will affect native Senecio species and their relatives. References: (1) J. Frantzen and H. Müller-Schärer. Plant Pathol. 48:483, 1999. (2) B. Henricot and G. Denton. Plant Pathol. 54:242, 2005. (3) L. Littlefield et al. Ann. Appl. Biol. 147:35, 2005. (4) M. Scholler. J. Plant Dis. Prot. 105:239, 1998.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 684-684
Author(s):  
C. Saude ◽  
M. K. Hausbeck

In April 2005, an Alternaria sp. was isolated from carrot (Daucus carota) roots harvested in the fall of 2004 and held at 1 to 3°C in a storage facility in Newaygo County, MI. The pathogen was readily isolated on water agar from root tissue exhibiting grayish black, sunken lesions. Morphological characteristics were noted 5 to 7 days after single-conidium cultures were established on potato dextrose agar (3). Sixteen Alternaria sp. isolates were recovered. Cultures were dark olive brown, and conidia were pigmented, ellipsoidal, and produced singly or in chains of two. Conidia were 35 to 45 μm long and 15 to18 μm in diameter, usually with three to eight transverse and one to four longitudinal septa. Pathogenicity of isolates was tested on carrot roots in the laboratory and carrot seedlings (cv. Goliath) in the greenhouse. In the laboratory, four surface-sterilized, whole carrot roots were sprayed until runoff with 2 × 106 conidia/ml of each isolate and incubated at 23 to 25°C in a moist chamber for 10 days. Controls were sprayed with sterile distilled water. Ten to fifteen days after inoculation, inoculated carrots exhibited grayish black, sunken lesions, and an Alternaria sp. was reisolated from the margin of the lesions. Controls remained healthy. In the greenhouse, seven pots containing one 2-week-old carrot seedling were watered to saturation and plants were sprayed until runoff with 2 × 106 conidia/ml for each isolate. Control plants were sprayed with sterile distilled water. After inoculation, plants were enclosed in clear plastic bags, placed under 63% woven shade cloth and watered regularly. Black lesions were observed on the foliage 7 days after inoculation, and wilt and death of plants were observed 15 to 30 days after inoculation. Alternaria sp. was reisolated from the foliage of symptomatic plants. Control plants remained healthy. DNA was extracted from all isolates, and the nuclear ribosomal internal transcribed spacer (ITS) region amplified with primers ITS4 and ITS5 and sequenced. A portion of the ITS sequence has been deposited in the NCBI database (GenBank Accession No. DQ394073). A BLAST search of the NCBI database with the ITS sequences revealed A. radicina, Accession No AY154704, as the closest match with 100% sequence similarity. In September 2005, an Alternaria sp. was isolated from black lesions on carrot roots, crowns, and foliage that were collected from fields in Newaygo and Oceana counties, MI. The recovered isolates were morphologically similar to A. radicina isolates obtained from stored carrots in April 2005. First isolated and identified on stored carrots in New York (3), A. radicina is also present in other carrot-producing areas of the United States (1) and was isolated not only from stored carrots but also from carrots in the field (2) and carrot seeds (4). To our knowledge, this is the first report of A. radicina on stored and field carrots in Michigan, which signifies a serious risk to a carrot industry that ranks among the top five in the United States. References: (1) D. F. Farr et al. Fungi on Plants and Plant Produce in the United States.The American Phytopathological Society, St. Paul, MN, 1989. (2) R. G. Grogan and W. C. Snyder. Phytopathology 42:215, 1952. (3) F. C. Meier and E. D. Eddy. Phytopathology 12:157, 1922. (4) B. M. Pryor and R. L. Gilbertson. Plant Dis. 85:18, 2001.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 278-278
Author(s):  
B. E. C. Miranda ◽  
A. M. S. Cardoso ◽  
R. W. Barreto

Rumex acetosa L., common name sorrel (in Brazil, azedinha), is an herb from Europe and Asia commonly used either as a vegetable or a medicinal plant (1). No pathogen has been recorded on this plant species in Brazil, where it has been promoted as an alternative vegetable crop. During a routine inspection of a vegetable garden in the campus of the Universidade Federal de Viçosa (Viçosa, state of Minas Gerais, Brazil) in July 2011, a group of sorrel plants were found bearing blight symptoms. Infected leaves had laminae with soaked irregular necrotic areas and infected petioles had reddish lesions. Healthy leaves touched by neighboring blighted leaves became diseased. A mycelial web was always associated with necrotic tissues. A representative specimen was collected, dried in a plant press, and deposited in the local herbarium (VIC 39063). Pure cultures were obtained through direct transfer of mycelium to PDA plates and deposited in the culture collection at the Universidade Federal de Viçosa – Coleção Oswaldo Almeida Drummond (COAD 1265). Slides containing fungal structures were mounted in lactophenol and observed under a microscope (Olympus BX 51). The fungus had the following morphology: mycelium superficial, either filiform or monilioid and constricted at septae, 6 to 10 μm diameter, often branching at right angles or nearly so, typically bearing a septum at branches near the branching point. Additionally, large, poorly differentiated, dirty white sclerotia were formed in older cultures. When mounted in DAPI, 7-day-old mycelium was seen to bear 5 to 13 nuclei per cell. These characteristics suggested that the fungus was Rhizoctonia solani Kuhn (RS). Anastomosis group (AG) was determined by sequencing the rDNA internal transcribed spacer (ITS) region using primers ITS5 and ITS4 (4). A BLAST search revealed that the sequence (GenBank Accession No. KC887353) had 96% sequence identity with RS AG-1-IB GenBank accessions JN426850.1, GU596491.1, JQ692292.1, and JQ692291.1. Pathogenicity of the isolate obtained from sorrel was tested by inoculating four healthy individuals with culture plugs taken from the margin of actively growing cultures on V8 juice agar. Inoculated plants were placed in a dew chamber for 48 h and later transferred to the bench of a greenhouse. Necrosis appeared on all inoculated plants 2 days after inoculation, developing into severe blight after 7 days. RS was isolated from infected tissues. RS AG-1-IB is known as a broad host-range plant pathogen (3). This is its first report as a pathogen of sorrel in Brazil. The sole other published record of this disease on sorrel is from the United States (2). References: (1) N. R. Madeira et al. Hortic. Brasil. 26:428, 2008. (2) G. L. Peltier. Parasitic rhizoctonias in America. University of Illinois Agricultural Experiment Station, 1915. (3) B. Sneh, L. Burpee, and A. Ogoshi. Identification of Rhizoctonia species. APS Press, St Paul, MN, 1991. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 432-432 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Hosta fortunei (Liliaceae) is used in semishaded areas of gardens for its lavender-colored flowers produced in midsummer. In April of 2008, in a greenhouse at the University of Torino, located in Grugliasco (northern Italy), a leaf blight was observed on 15% of potted 60-day-old plants growing at temperatures ranging between 20 and 25°C and relative humidity of 60 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and clung to the shoots. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characters of Rhizoctonia solani (4) was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 4 (AG 4 RT 31 obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI, but no anastomosis was observed. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 646-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534556. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Six-month-old plants of H. fortunei were grown in 1-liter pots. Inoculum, which consisted of an aqueous suspension of PDA and mycelium disks (10 g of mycelium per pot), was placed at the collar of plants. Plants inoculated with water and PDA fragments alone served as control treatments. Five plants per treatment were used. Plants were maintained in a growth chamber at 20 ± 1°C. The first symptoms, similar to those observed in the nursery, developed 15 days after inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. R. solani was reported on plants belonging to the genus Hosta in the United States (3). This is, to our knowledge, the first report of leaf blight of H. fortunei caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathology Society, St Paul, MN, 1989. (4) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
T. Kolomiets ◽  
Z. Mukhina ◽  
T. Matveeva ◽  
D. Bogomaz ◽  
D. K. Berner ◽  
...  

Salsola tragus L. (Russian thistle) is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying S. tragus plants were found along the Azov Sea at Chushka, Russia. Dying plants had irregular, necrotic, canker-like lesions near the base of the stems and most stems showed girdling and cracking. Stem lesions were dark brown and contained brown pycnidia within and extending along lesion-free sections of the stems and basal portions of leaves. Diseased stems were cut into 3- to 5-mm pieces and disinfested in 70% ethyl alcohol. After drying, stem pieces were placed into petri dishes on the surface of potato glucose agar. Numerous, dark, immersed erumpent pycnidia with a single ostiole were observed in all lesions after 2 to 3 days. Axenic cultures were sent to the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD for testing in quarantine. Conidiophores were simple, cylindrical, and 5 to 25 × 2 μm (mean 12 × 2 μm). Alpha conidia were biguttulate, one-celled, hyaline, nonseptate, ovoid, and 6.3 to 11.5 × 1.3 to 2.9 μm (mean 8.8 × 2.0 μm). Beta conidia were one-celled, filiform, hamate, hyaline, and 11.1 to 24.9 × 0.3 to 2.5 μm (mean 17.7 × 1.2 μm). The isolate was morphologically identified as a species of Phomopsis, the conidial state of Diaporthe (1). The teleomorph was not observed. A comparison with available sequences in GenBank using BLAST found 528 of 529 identities with the internal transcribed spacer (ITS) sequence of an authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514; BPI 748435; CBS 109767). Morphology is consistent with that of Phomopsis oblonga (Desm.) Traverso, the anamorph of D. eres (2). Healthy stems and leaves of 10 30-day-old plants of S. tragus were spray inoculated with an aqueous suspension of conidia (1.0 × 106 alpha conidia/ml plus 0.1% v/v polysorbate 20) harvested from 14-day-old cultures grown on 20% V8 juice agar. Another 10 control plants were sprayed with water and surfactant without conidia. Plants were placed in an environmental chamber at 100% humidity (rh) for 16 h with no lighting at 25°C. After approximately 24 h, plants were transferred to a greenhouse at 20 to 25°C, 30 to 50% rh, and natural light. Stem lesions developed on three inoculated plants after 14 days and another three plants after 21 days. After 70 days, all inoculated plants were diseased, four were dead, and three had more than 75% diseased tissue. No symptoms occurred on control plants. The Phomopsis state was recovered from all diseased plants. This isolate of D. eres is a potential biological control agent of S. tragus in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878717). Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2) were deposited in GenBank (Accession No. EU805539). To our knowledge, this is the first report of stem canker on S. tragus caused by D. eres. References: (1) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (2) L. E. Wehmeyer. The Genus Diaporthe Nitschke and its Segregates. University of Michigan Press, Ann Arbor, 1933.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 905-905 ◽  
Author(s):  
N. A. Mitkowski

In the fall of 2006, a golf course in Snoqualmie, WA renovated five putting greens with commercially produced Poa annua L. sod from British Columbia, Canada. Prior to the renovation, the greens had been planted with Agrostis stolonifera L. cv. Providence, which was removed during the renovation. In February of 2007, chlorotic patches were observed on the newly established P. annua greens. When the roots were examined, extensive galling was observed throughout plant roots. Galls were slender and twisted in appearance and less than one millimeter long. Upon dissection of washed galls, hundreds of eggs were exuded into the surrounding water droplet and both mature male and female nematodes were observed. Further morphometric examination of males, females, and juvenile nematodes demonstrated that they were Subanguina radicicola (Greef 1872) Paramanov 1967 (1). Amplification of nematode 18S, ITS1, and 5.8S regions, using previously published primers (2), resulted in a 100% sequence match with the publicly available sequence for S. radicicola, GenBank Accession No. AF396366. Each P. annua plant had an average of six galls (with a range of 1 to 8), primarily located within the top 2 cm of the soil. All five new P. annua putting greens at the golf course were infested with the nematode. Additionally, P. annua from two A. stolonifera cv. Providence greens that had not been renovated was infected, suggesting that the population occurred onsite and was not imported from the Canadian sod. S. radicicola has been identified as causing severe damage in New Brunswick, Canada on P. annua putting greens and in wild P. annua in the northwestern United States, but to our knowledge, this is the first report of the nematode affecting P. annua on a golf course in the United States. References: (1) E. L. Krall. Wheat and grass nematodes: Anguina, Subanguina, and related genera. Pages 721–760 in: Manual of Agricultural Nematology. Marcel Dekker, New York, 1991. (2) N. A. Mitkowski et al. Plant Dis. 86:840, 2002.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 906-906 ◽  
Author(s):  
M. F. Chuang ◽  
H. F. Ni ◽  
H. R. Yang ◽  
S. L. Shu ◽  
S. Y. Lai ◽  
...  

Pitaya (Hylocereus undatus and H. polyrhizus Britt. & Rose), a perennial succulent plant grown in the tropics, is becoming an emerging and important fruit plant in Taiwan. In September of 2009 and 2010, a number of pitaya plants were found to have a distinctive canker on stems. The disease expanded quickly to most commercial planting areas in Taiwan (e.g., Pintung, Chiayi, and Chunghua). Symptoms on the stem were small, circular, sunken, orange spots that developed into cankers. Pycnidia were erumpent from the surface of the cankers and the stems subsequently rotted. After surface disinfestation with 0.1% sodium hypochloride, tissues adjacent to cankers were placed on acidified potato dextrose agar (PDA) and incubated at room temperature for 1 week, after which colonies with dark gray-to-black aerial mycelium grew. Hyphae were branched, septate, and brown and disarticulated into 0- to 1-septate arthrospores. Sporulation was induced by culturing on sterile horsetail tree (Casuarina equisetifolia) leaves. Conidia (12.79 ± 0.72 × 5.14 ± 0.30 μm) from pycnidia were one-celled, hyaline, and ovate. The internal transcribed spacer (ITS) region of ribosomal DNA was PCR amplified with primers ITS1 and ITS4 (2) and sequenced. The sequence (GenBank Accession No. HQ439174) showed 99% identity to Neoscytalidium dimidiatum (Penz.) Crous & Slippers (GenBank Accession No. GQ330903). On the basis of morphology and nucleotide-sequence identity, the isolates were identified as N. dimidiatum (1). Pathogenicity tests were conducted in two replicates by inoculating six surface-sterilized detached stems of pitaya with either mycelium or conidia. Mycelial plugs from 2-day-old cultures (incubated at 25°C under near UV) were inoculated to the detached stems after wounding with a sterile needle. Conidial suspensions (103 conidia/ml in 200 μl) were inoculated to nonwounded stems. Noninoculated controls were treated with sterile medium or water. Stems were then incubated in a plastic box at 100% relative humidity and darkness at 30°C for 2 days. The symptoms described above were observed on inoculated stems at 6 to 14 days postinoculation, whereas control stems did not develop any symptoms. N. dimidiatum was reisolated from symptomatic tissues. To our knowledge, this is the first report of N. dimidiatum causing stem canker of pitaya. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Sign in / Sign up

Export Citation Format

Share Document