Effect of Tractor Speed and Spray Application Volume on Severity of Scab at Different Heights in the Canopy of Tall Pecan Trees

Plant Disease ◽  
2021 ◽  
Author(s):  
Clive Bock ◽  
Marvin Wells ◽  
Mike W Hotchkiss

Scab (caused by Venturia effusa) is the most important yield-limiting disease of pecan in the southeastern USA. On susceptible cultivars, the disease is managed using fungicides, but spray coverage is an issue in tall trees. In four experiments we used an air-blast sprayer to compare scab severity on fruit at 5.0 to 15.0 m height in trees receiving the same dose of fungicide at 468, 935 and 1871 L/ha at 2.4 and 3.2 km/h (in two additional experiments fungicides were applied at 4.0 km/h @ 470 L/Ha, 4.0 km/h @ 940 L/Ha and 4.0 km/h @ 1100 L/Ha). An air-blast sprayer was used for the applications, which included typical recommended active ingredients (a.i.). Nozzles were selected to provide similar proportions of spray to the upper and lower canopy. The treatments (or subsets thereof) were repeated in 2015 to 2017 on cv. Schley, and in 2017, 2019 and 2020 on cv. Desirable. All treatments reduced scab compared to the control. Overall, there was no consistent difference among the treatments for severity of scab on foliage, immature fruit, or mature fruit at any height in the canopy up to 15.0 m (maximum height sampled). Fungicide applied at 2.4 or 3.2 km/h @ 470 L/ha was as effective at reducing disease as were the higher volumes (sometimes more so). The scab epidemic severity affected control efficacy. Estimated cost and water savings based on faster speed and lower volume were considerable. These preliminary observations indicate no single volume or speed was consistently superior to control scab; this suggests in most seasons, low volumes (higher concentration of a.i.) may be similarly efficacious as high volumes (lower concentration of a.i.) for controlling scab in tall pecan trees, and offer greater resource use efficiency.

2011 ◽  
Vol 3 (9) ◽  
pp. 532-534
Author(s):  
Ganeshkumar D Rede ◽  
◽  
Dr. S. J. Kakde Dr. S. J. Kakde ◽  
Vanita Khobarkar

The study was conducted using purposive cum random sampling technique and two hundred respondents comprised of 100 each borrowers and non-borrowers were selected from two block of district including marginal, small and medium categories of farm size. Primary data were collected through personal interview technique and required secondary information was taken from the record available at district and block level. Simple tabular and functional analysis and Garrett ranking were done to draw inferences. As per the result obtained from the study, no much difference was seen between the resource use efficiency of borrower and non-borrower farms and constraints faced by borrower. Since banana is a cash crop and it needs initial costs for its establishment, and after harvesting the crop regular source of income was generated by selling of suckers (seed) plant and its fruits. It’s by-product, leaves, etc. also used for various purposes. Minute inspection of the analysis showed that finance played important role for initiating the cultivation of banana crops showed the resource use efficiency that there is no considerable difference found on sample farms of borrower and non-borrower categories. Constraints faced by majority of the farmers were mainly delay in disbursement of loan and lack of the repayment period insufficient and improper management for withdraws on KCC.


2015 ◽  
Vol 41 (9) ◽  
pp. 1393 ◽  
Author(s):  
Bao-Yuan ZHOU ◽  
Zhi-Min WANG ◽  
Yang YUE ◽  
Wei MA ◽  
Ming ZHAO

2020 ◽  
Vol 56 (3) ◽  
pp. 422-439
Author(s):  
Guoping Wang ◽  
Yabing Li ◽  
Yingchun Han ◽  
Zhanbiao Wang ◽  
Beifang Yang ◽  
...  

AbstractThe cotton-wheat double-cropping system is widely used in the Yellow River Valley of China, but whether and how different planting patterns within cotton-wheat double-cropping systems impact heat and light use efficiency have not been well documented. A field experiment investigated the effects of the cropping system on crop productivity and the capture and use efficiency of heat and light in two fields differing in soil fertility. Three planting patterns, namely cotton intercropped with wheat (CIW), cotton directly seeded after wheat (CDW), and cotton transplanted after wheat (CTW), as well as one cotton monoculture (CM) system were used. Cotton-wheat double cropping significantly increased crop productivity and land equivalent ratios relative to the CM system in both fields. As a result of increased growing degree days (GDD), intercepted photosynthetically active radiation (IPAR), and photothermal product (PTP), the capture of light and heat in the double-cropping systems was compared with that in the CM system in both fields. With improved resource capture, the double-cropping systems exhibited a higher light and heat use efficiency according to thermal product efficiency, solar energy use efficiency (Eu), radiation use efficiency (RUE), and PTP use efficiency (PTPU). The cotton lint yield and biomass were not significantly correlated with RUE across cropping patterns, indicating that RUE does not limit cotton production. Among the double-cropping treatments, CDW had the lowest GDD, IPAR, and PTP values but the highest heat and light resource use efficiency and highest overall resource use efficiency. This good performance was even more obvious in the high-fertility field. Therefore, we encourage the expanded use of CDW in the Yellow River Valley, especially in fields with high fertility, given the high productivity and resource use efficiency of this system. Moreover, the use of agronomic practices involving a reasonably close planting density, optimized irrigation and nutrient supply, and the application of new short-season varieties of cotton or wheat can potentially enhance CDW crop yields and productivity.


2021 ◽  
Vol 3 ◽  
pp. 100070
Author(s):  
Meng-Chun Tseng ◽  
Álvaro Roel ◽  
Ignacio Macedo ◽  
Muzio Marella ◽  
José A. Terra ◽  
...  

2022 ◽  
Vol 295 ◽  
pp. 110802
Author(s):  
Hao Zhou ◽  
Rhydian Beynon-Davies ◽  
Nicola Carslaw ◽  
Ian C. Dodd ◽  
Kirsti Ashworth

Sign in / Sign up

Export Citation Format

Share Document