scholarly journals First Report of Root Rot Caused by Fusarium avenaceum on Coptis chinensis in Chongqing, China

Plant Disease ◽  
2020 ◽  
pp. PDIS-05-20-1110
Author(s):  
P. Y. Mei ◽  
X. H. Song ◽  
Z. Y. Zhu ◽  
L. Y. Li
Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 832 ◽  
Author(s):  
M. Wei ◽  
J. Q. Zhu ◽  
W. X. Guan ◽  
W. Zhang ◽  
B. Z. Fu ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1864 ◽  
Author(s):  
S. T. Koike ◽  
O. Daugovish ◽  
S. C. Kirkpatrick ◽  
P. M. Henry ◽  
T. R. Gordon

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 286-286
Author(s):  
I. Stanković ◽  
K. Milojević ◽  
A. Vučurović ◽  
D. Nikolić ◽  
B. Krstić ◽  
...  

Carrot (Daucus carota L. subsp. sativus (Hoffm.) Thell., Apiaceae), a widely consumed antioxidant-rich plant, is among the major vegetable crops grown in Serbia, with average annual production of 65,400 tons on approximately 7,000 ha (4). In May 2013, a severe root rot was observed on approximately 20% of cold-stored carrot roots originating from Gospođinci, South Bačka District, Serbia. Symptoms included dry rot of the collar and crown as well as large, brown to dark brown, circular, sunken lesions on the stored roots. Frequently, abundant whitish mycelium was observed covering the surface of the colonized roots. To determine the causal agent, small pieces of infected tissue were surface-disinfested with 2% NaOCl without rinsing, air-dried, and placed on potato dextrose agar. Five single-spore isolates obtained from collar and crown tissue sections, as well as nine isolates from root sections, all formed abundant, cottony white to pale salmon fungal colonies with reddish orange pigment on the reverse surface of the agar medium when grown at 25°C under 12 h of fluorescent light per day. All recovered isolates formed numerous, three- to six-septate, hyaline, needle-like, straight to slightly curved, fusoid macroconidia (30 to 80 × 4 to 5.5 μm, average 58.3 × 4.9 μm, n = 100 spores) each with a tapering apical cell. Microconidia of all isolates were generally scarce, two- to four-septate, spindle-shaped, and 15 to 35 × 3 to 5 μm (average 21.3 × 4.2 μm). Chlamydospores were not observed. Based on these morphological characteristics, the pathogen was identified as Fusarium avenaceum (Fries) Saccardo (1). The pathogenicity on carrot was tested for isolate 19-14 by inoculating each of five carrot roots surface-disinfected with 2% NaOCl, by placing a mycelial plug into the surface of a wound created with a cork borer. Carrot roots inoculated with sterilized PDA plugs served as a negative control treatment. After 5 days of incubating the roots at 25°C, root rot symptoms identical to those observed on the source carrot plants developed on all inoculated roots, and the pathogen was re-isolated from each of these roots using the same procedure descibed above. There were no symptoms on the control roots. Morphological species identification was confirmed by sequencing the translation elongation factor (EF-1α) gene (2). Total DNA was extracted directly from fungal mycelium of isolate 19-14 with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), and PCR amplification was performed with primer pair EF-1/EF-2 (2). Sequence analysis of the EF-1α gene revealed 100% nucleotide identity of isolate 19-14 (GenBank Accession No. KM102536) with the EF-1α sequences of two F. avenaceum isolates from Canada (KC999504 from rye and JX397864 from Triticum durum). To our knowledge, this is the first report of F. avenaceum causing collar, crown, and root rots of stored carrot in Serbia. Since F. avenaceum can produce several mycotoxins, including moniliformin, acuminatopyrone, and chrysogine (3), the presence of this pathogen on stored carrots could represent a significant constraint for carrot production in Serbia, for both direct yield losses and potential mycotoxin contamination. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, UK, 2006. (2) K. O'Donnell et al. Proc. Natl. Acad. Sci. U.S.A. 95:2044, 1998. (3) J. L. Sorenson. J. Agric. Food Chem. 57:1632, 2009. (4) Statistical Office, Republic of Serbia. Retrieved from http://webrzs.stat.gov.rs in May 2014.


Plant Disease ◽  
2021 ◽  
Author(s):  
PengYing MEI ◽  
Xuhong Song ◽  
Zhiyu Zhu ◽  
Longyun Li

Chongqing coptis (Coptis chinensis Franchet) industry produces more than 60% of the Chinese coptis crop, and has been exported to many countries and regions. Since 2008, root rot has become a serious and widespread disease on coptis plants in Shizhu county with an average incidence of 40%, and yield losses up to 67%. Symptomatic coptis plants showed stunted growth, with the fibrous roots and main roots having brown or black, rotten, necrotic lesions. To our knowledge, Fusarium solani, F. carminascens, F. oxysporum and F. tricinctum have been previously reported as pathogens of coptis root rot (Luo et al. 2014; Cheng et al. 2020; Wu et al. 2020), but non Fusarium pathogens has not been reported yet. In order to identify new pathogens, 33 diseased roots were collected from Shizhu (30°18'N, 108°30'E) in October 2019. Small samples (0.5 cm in length) were cut from the border between diseased and healthy tissue, and then put on PDA after surface sterilization. Cultures were incubated at 25°C in dark until fungal colonies were observed. After subculturing for 3 times, 3 out of 21 isolates yielded a similar type of fungal colony. White, aerial, fluffy mycelium were formed and reached 8.3 cm diameter within 7 days, and dark pigmentation developed in the centre. Colonies turned to gray with age, and abundant dark brown pycnidia and black stromata were formed at maturity. Alpha conidia were aseptate, hyaline, fusiform to ellipsoidal, often biguttulate, measuring (6.0-8.5)×(2.0-3.0) μm. Beta conidia were aseptate, hyaline, linear to hooked, measuring (18-30)×(1.0-1.5) μm (Figure S1). For further identification, a multigene phylogenetic analysis was carried out. The internal transcribed spacer (ITS), translation elongation factor 1ɑ (tef1-ɑ), histone H3 (his3), calmodulin (cal), and β-tubulin (tub2) gene regions were amplified with ITS1/ITS4, EF1-728F/EF1-986R, CYLH3F/H3-1b, CAL228F/CAL737R, T1/Bt2b (White et al. 1990; Glass and Donaldson 1995; Carbone and Kohn 1999; Crous et al. 2004). GenBank accession numbers of isolate H13 were MT463391 for the ITS region, MT975573 for tef1-ɑ, MT975574 for his3, MT975575 for cal, and MT975576 for tub2. BLAST results showed the ITS, tef1-ɑ, his3, cal and tub2 sequences revealed 99.82% (553/554 base pairs), 100% (347/347 base pairs), 100% (474/474 base pairs), 99.39% (486/489 base pairs), and 99.14% (803/810 base pairs) homology respectively with those of Diaporthe eres (MN816416.1, KU557616.1, KC343564.1, KU557595.1, and KY569366.1). Thus, H13 were identified as D. eres based on its morphological and molecular characteristics. Pathogenicity of D. eres in coptis was investigated using the H13 isolate (1 of the 3 isolates). The roots of 10 healthy 2-year-old coptis plants were individually inoculated with 5 ml of a 106 conidia/mL conidial suspension and sterilized water was used to mock inoculate. Thirty days after inoculation, most of the inoculated coptis roots showed dark brown and rotten root, similar to those observed in the field, whereas mock inoculated roots showed healthy. D. eres was recovered from symptomatic roots and identified based on morphology. To our knowledge, this is the first report of D. eres causing root rot of coptis not only in China but anywhere in the world.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2170 ◽  
Author(s):  
H. García-Núñez ◽  
A. R. Martínez-Campos ◽  
C. A. López-Orona ◽  
J. M. Díaz-Mínguez

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1254
Author(s):  
B. H. Lu ◽  
Z. Wang ◽  
G. J. Yi ◽  
G. W. Tan ◽  
F. Zeng ◽  
...  

Author(s):  
Jefferson Bertin Vélez-Olmedo ◽  
Sergio Vélez-Zambrano ◽  
Bianca Samay Angelino Bonfim ◽  
Edisson Cuenca Cuenca ◽  
Susana García ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2650-2650
Author(s):  
S. Ma ◽  
Z. Cao ◽  
Q. Qu ◽  
N. Liu ◽  
M. Xu ◽  
...  

Author(s):  
Shivannegowda Mahadevakumar ◽  
Yelandur Somaraju Deepika ◽  
Kandikere Ramaiah Sridhar ◽  
Kestur Nagaraj Amruthesh ◽  
Nanjaiah Lakshmidevi

Sign in / Sign up

Export Citation Format

Share Document