scholarly journals First Report of Stolbur Phytoplasma Infection in Commercial Freesia hybrida Cultivars

Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1820-1820
Author(s):  
B. N. Chung ◽  
Y. J. Choi ◽  
K. H. Choi ◽  
Y. S. Do ◽  
S. Y. Lee

In January 2012, disease symptoms including chlorosis, leaf crinkle, leaf curving and stunting of whole plants, virescence, and curving and necrosis of flower stalks were observed in Freesia hybrida cvs. Evone, Honey Moon, Golden Gem, and Pallas in Icheon and Suwon (Gyeonggi Province in Korea). To determine a possible phytoplasma infection, the symptomatic freesia plants were examined for the presence of phytoplasma 16S rDNA fragment by PCR with the primer pair P1/P6 (2) and R16F1/R16R1 (in nested PCR), which amplifies phytoplasma 16S rDNA regions (4). An expected PCR product of ~1,096 bp was obtained from the symptomatic freesia plants, and they were designated as FreLN, Fre-phy-Ev4, Fre-phy-Ev6, Fre-phy-GG, Fre-phy-HM, and Fre-phy-Pal. The PCR products were sequenced and registered as GenkBank accessions AB695174 and AB709951-55. The sequence corresponding to symptomatic freesia had 98.8 to 99.4% identity with Stolbur phytoplasma strains in the 16S rDNA region, and it had only 95.7 to 96.3% identity with AY phytoplasma strains. In the ultra-thin sections of the leaf midribs, globous phytoplasmal bodies 54 to 214 nm in size were observed in sieve tube elements of phloem tissue. Fre-Phy-Ev6 and Fre-Phy-HM were doube-infected with Stolbur phytoplasma and Freesia mosaic virus (FreMV). Fre-Phy-Ev6 and Fre-Phy-HM revealed necrosis of flower stalks and flower color breaking besides curving of flower stalks. Therefore, flower color breaking and flower stalk necrosis were assumed to be caused by FreMV (1). Symptoms of chlorosis and stunting of whole plants shown in FreLN and virescence of Fre-phy-GG were typical symptoms of phytoplasmal diseases, while leaf crinkle, leaf curving, and curving of flower stalks appeared to be unique symptoms in F. hybrida. Stolbur phytoplasma was abundant in commercial freesia cultivation fields. Some of the cultivars, such as cv. Pallas, showed only curving of leaf and flower stalks without any typical symptom of phytoplasmal diseases. A phytoplasmal disease was reported in Poland in 2001 from F. hybrida exhibiting leaf chlorotic and necrotic spots, and classified as AY I-B based on RFLP analysis of PCR products (3). To our knowledge, this is the first report of Stolbur phytoplasma in F. hybrida. This result is significant because F. hybrida could be the infection source of Stolbur phytoplasma disease in floricultural crops. Interestingly, we found a prevalence of Stolbur phytoplasma in Petunia hybrida cultivars (GenBank Accession Nos. AB713757 to AB713758). High nucleotide sequence identity of 99.8% in the 16S rDNA region of Stolbur phytoplasma isolates from petunia and freesia support the inference that those Stolbur phytoplasma isolates could infect both floricultural crops. References: (1) A. A. Brunt. Freesia. Page 274 in: Virus and virus-like Diseases of Bulb and Flower Crops, John Wiley & Sons, Chichester, 1995. (2) S. Deng and C. Hiruki. J. Microbiol. Methods. 14:53, 1991. (3) M. Kamińska and H. Sliwa. Plant Dis. 85:336, 2001. (4) I. M. Lee et al. Phytopathology 84:559, 1994.

Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1688-1688 ◽  
Author(s):  
F. Terlizzi ◽  
A. R. Babini ◽  
C. Lanzoni ◽  
A. Pisi ◽  
R. Credi ◽  
...  

During the fall seasons of 2005 and 2006, diseased strawberry plants (Fragaria × ananassa Duch.) were observed in nurseries and production fields in Ferrara, Forli-Cesena, and Ravenna provinces (Emilia-Romagna region, northern Italy). Symptoms consisted of a conspicuous plant stunting with a poor root system. Older leaves rolled upward and displayed a marked premature purplish discoloration, while young leaves were cupped, chlorotic, generally reduced in size, and had shortened petioles. This strawberry disorder was similar to “marginal chlorosis”, an infectious disease occurring in France that can be induced by two different phloem-limited uncultured bacteria: the γ 3-proteobacterium ‘Candidatus Phlomobacter fragariae’ and the stolbur phytoplasma (16SrXII-A). In strawberry production fields, ‘Ca. P. fragariae’ is reported as being the prevalent agent of this disease (1). Sixty-seven diseased plants were collected from production fields and nurseries for testing for ‘Ca. P. fragariae’. Leaf samples were analyzed by 4′,6-diamidine-2-phenylindole staining and PCR. Forty samples showed fluorescent DNA in the phloem, whereas no fluorescence was observed in symptomless strawberries. When tested by PCR with primers Fra4/Fra5, which amplify a 550-bp fragment of the 16S rDNA region of ‘Ca. P. fragariae’ (1), 13 of 36 strawberries from production fields and 1 of 31 nursery plants gave a positive reaction. On the other hand, 21 samples from nurseries and 5 from production fields tested positive for stolbur phytoplasma (3). No amplification was obtained with DNA from symptomless or healthy strawberry plants. Sequencing Fra4/Fra5 amplicons from three samples (GenBank Accession Nos. DQ362916–DQ362918) showed a 98.1 to 98.6% and a 98.3 to 98.8% identity with the published sequences of the French isolate “LG2001” (GenBank Accession No. AM110766) and the Japanese isolate J-B (GenBank Accession No. AB246669) of ‘Ca. P. fragariae’, respectively. Higher homology (99.2 to 99.8%) was found with another bacterium-like organism (BLO) of the γ 3-proteobacteria subgroup (GenBank Accession No. AY057392) associated with the syndrome “basses richesses” of sugar beet (SBR). Furthermore, PCR assays performed with primers Pfr1/Pfr4, specific for spoT gene of ‘Ca. P. fragariae’, did not show any amplification with DNA from the 14 diseased strawberry plants tested. This is in agreement with the SBR BLO identification (2). To better characterize the Italian isolates, the full-length 16S rDNA gene was analyzed with primers fd1/Fra4 and Fra5/rp1, which amplify the 5′ and 3′ region of 16S rDNA gene of the proteobacteria, respectively (2). PCR products from eight isolates were sequenced, and the 16S rDNA sequences obtained (GenBank Accession Nos. DQ538372–DQ538379) showed a 96.4 to 97.3% identity with the known ‘Ca. P. fragariae’ isolates, while a higher homology (99.4 to 99.9%) was again found with the SBR BLO. To our knowledge, this is the first report of a γ 3-proteobacterium affecting strawberry in Italy. In the genome region analyzed, our isolates are more similar to the SBR BLO than to ‘Ca. P. fragariae’. Further work is in progress to investigate incidence, geographical distribution, epidemiology, and host range of this pathogen in Italy. References: (1) J. L. Danet et al. Phytopathology 93:644, 2003. (2) O. Semetey et al. Phytopathology 97:72, 2007. (3) F. Terlizzi et al. Plant Dis. 90:831, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 360-360 ◽  
Author(s):  
A. M. Al-Subhi ◽  
N. A. Al-Saady ◽  
A. J. Khan ◽  
M. L. Deadman

Eggplant (Solanum melongena L.) belongs to the family Solanaceae and is an important vegetable cash crop grown in most parts of Oman. In February 2010, plants showing phyllody symptoms and proliferation of shoots resembling those caused by phytoplasma infection were observed at Khasab, 500 km north of Muscat. Total genomic DNA was extracted from healthy and two symptomatic plants with a modified (CTAB) buffer method (2) and analyzed by direct and nested PCR with universal phytoplasma 16S rDNA primers P1/P7 and R16F2n/ R16R2, respectively. PCR amplifications from all infected plants yielded an expected product of 1.8 kb with P1/P7 primers and a 1.2-kb fragment with nested PCR, while no products were evident with DNA from healthy plants. Restriction fragment length polymorphism (RFLP) profiles of the 1.2-kb nested PCR products of two eggplant phyllody phytoplasma and five phytoplasma control strains belonging to different groups used as positive control were generated with the restriction endonucleases RsaI, AluI, Tru9I, T-HB8I, and HpaII. The eggplant phytoplasma DNA yielded patterns similar to alfalfa witches'-broom phytoplasma (GenBank Accession No. AF438413) belonging to subgroup 16SrII-D, which has been recorded in Oman (1). The DNA sequence of the 1.8-kb direct PCR product was deposited in GenBank (Accession No. HQ423156). Sequence homology results using BLAST revealed that the eggplant phyllody phytoplasma shared >99% sequence identity with Scaevola witches'-broom phytoplasma (Accession No. AB257291.1), eggplant phyllody phytoplasma (Accession No. FN257482.1), and alfalfa witches'-broom phytoplasma (Accession No. AY169323). The RFLP and BLAST results of 16S rRNA gene sequences confirm that eggplant phyllody phytoplasma is similar to the alfalfa phytoplasma belonging to subgroup 16SrII-D. To our knowledge, this is the first report of a phytoplasma of the 16SrII-D group causing witches'-broom disease on eggplant in Oman. References: (1) A. J. Khan et al. Phytopathology 92:1038, 2002. (2) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA, 81:8014, 1984.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
I.-M. Lee ◽  
R. A. Dane ◽  
M. C. Black ◽  
Noel Troxclair

In early spring 2000 carrot crops in southwestern Texas were severely infected by an outbreak of phyllody associated with aster yellows phytoplasma. Cabbage crops that had been planted adjacent to these carrot fields began to display previously unobserved symptoms characteristic of phytoplasma infection. Symptoms included purple discoloration in leaf veins and at the outer edges of leaves on cabbage heads. Proliferation of sprouts also occurred at the base of the stem and between leaf layers of some plants, and sprouts sometimes continued to proliferate on extended stems. About 5% of cabbage plants in the field exhibited these symptoms. Two symptomless and four symptomatic cabbage heads were collected in early April from one cabbage field. Veinal tissues were stripped from each sample and used for total nucleic acid extraction. To obtain specific and sufficient amount of PCR products for analysis, nested PCR was performed by using primer pairs (first with P1/P7 followed by R16F2n/R16R2) (1,2) universal for phytoplasma detection. A specific 16S rDNA fragment (about 1.2 kb) was strongly amplified from the four symptomatic but not from the two asymptomatic samples. The nested PCR products obtained from the four symptomatic samples were then analyzed by restriction fragment length polymorphism (RFLP) using the restriction enzymes MseI, HhaI, and HpaII, and the RFLP patterns were compared to the published patterns of known phytoplasmas (1). The resulting RFLP patterns were identical to those of a phytoplasma belonging to subgroup B of the aster yellows phytoplasma group (16SrI). These RFLP patterns were also evident in putative restriction sites observed in a 1.5 kbp nucleotide sequence of the 16S rDNA. This is the first report of aster yellows phytoplasma associated disease symptoms in cabbage in Texas. The occurrence of cabbage proliferation coincided with the presence of high populations of the insect vector, aster leafhopper. References: (1) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) B. Schneider et al. 1995. Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, CA.


Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1739-1739 ◽  
Author(s):  
M. C. Holeva ◽  
P. E. Glynos ◽  
C. D. Karafla ◽  
E. M. Koutsioumari ◽  
K. B. Simoglou ◽  
...  

In August 2013, potato plants (Solanum tuberosum) cv. Banba displaying symptoms resembling those caused by Candidatus Phytoplasma solani (potato stolbur phytoplasma) were observed in a 2-ha field in the area of the Peripheral Unit of Drama (northern Greece). The plants were 10 weeks old and their symptoms included reddening and upward rolling of leaflets, reduced size of leaves, shortened internodes, and aerial tuber formation. Incidence of affected plants was estimated to be 40% in the field. Four symptomatic potato plants were collected for laboratory testing of possible phytoplasma infection. From each of these four plants, total DNA was extracted from mid veins of reddish leaflets from apical shoot parts and of leaflets emerging from aerial tubers, using a phytoplasma enrichment procedure (1). A nested PCR using the phytoplasma universal 16S rRNA primer pairs: P1/P7 followed by R16F2n/R16R2 (3) amplified the expected ~1.2-kb 16S rDNA fragment in all four symptomatic potato plants. No amplification was observed with DNA similarly extracted from leaflets of asymptomatic potato plants of the same variety collected from an apparently healthy crop. One of the four 1.2-kb nested 16S rDNA PCR products was gel purified, cloned into the pGEM-T-easy plasmid vector (Promega, Madison, WI), and sequenced by Beckman Coulter Genomics (United Kingdom). At least twofold coverage per base position of the cloned PCR product was achieved. BLAST analysis showed that the obtained sequence of the PCR 16S rDNA product was: i) 100% identical to several GenBank sequences of Ca. P. solani strains, including strains detected previously in Greece infecting tomato (GenBank Accession No. JX311953) and Datura stramonium (HE598778 and HE598779), and ii) 99.7% similar to that of the Ca. P. solani reference strain STOL11 (AF248959). Furthermore, analysis by iPhyClassifier software showed that the virtual restriction fragment length polymorphism (RFLP) pattern of the sequenced PCR 16S rDNA product is identical (similarity coefficient 1.00) to the reference pattern of the 16SrXII-A subgroup (AF248959). The sequence of this PCR product was deposited in NCBI GenBank database under the accession no. KJ810575. The presence of the stolbur phytoplasma in all four symptomatic potato plants examined was further confirmed by nested PCR using the stolbur-specific STOL11 primers (3) targeting non-ribosomal DNA. Based on the observed symptoms in the field and laboratory molecular examinations, we concluded that the potato plants were infected by a Ca. P. solani related strain. The stolbur disease has been previously reported in Greece affecting tomato (2,5) and varieties of D. stramonium (4). To our knowledge, this is the first report of a Ca. P. solani related strain infecting a potato crop in Greece. As northern Greece is a center of potato production, the source of this pathogen is to be investigated. References: (1) U. Ahrens and E. Seemuller. Phytopathology 82:828, 1992. (2) A. S. Alivizatos. Pages 945-950 in: Proceedings of the 7th International Conference of Plant Pathogenic Bacteria. Academiai Kiado, Budapest, Hungary, 1989. (3) J. Jović et al. Bull. Insectol. 64:S83, 2011. (4) L. Lotos et al. J. Plant Pathol. 95:447, 2013. (5) E. Vellios and F. Lioliopoulou. Bull. Insectol. 60:157, 2007.


Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 979-979 ◽  
Author(s):  
N. E. Cortés-Martínez ◽  
E. Valadez-Moctezuma ◽  
L. X. Zelaya-Molina ◽  
N. Marbán-Mendoza

In recent years, lily (Lilium spp.) has become an important ornamental crop in diverse regions of Mexico. Since 2005, unusual symptoms have been observed on lily plants grown from imported bulbs in both greenhouse and production plots at San Pablo Ixayo, Boyeros, and Tequexquinauac, Mexico State. Symptoms included a zigzag line pattern on leaves, dwarfism, enlargement of stems, shortened internodes, leaves without petioles growing directly from bulbs, air bulbils, death of young roots, atrophy of flower buttons, and flower abortion. Symptoms were experimentally reproduced on healthy lily plants by graft inoculation. Total DNA was extracted from 50 diseased, 10 symptomless, and 10 graft-inoculated plants by the method of Dellaporta et al. (2). DNA samples were analyzed for phytoplasma presence by two different nested PCR assays. One assay employed ribosomal RNA gene primer pair P1/P7 followed by R16F2n/R16R2 (1), whereas ribosomal protein (rp) gene primer pairs rpF1/rpR1 and rp(I)F1A/rp(I)R1A (4) were used in a second assay. A DNA fragment approximately 1.2 kb long was consistently amplified from all symptomatic plant samples only by both assays. A comparative analysis of 16S rDNA sequences (Genbank Accession Nos. EF421158–EF421160 and EU124518–EU124520) and rp gene sequences (EU277012–EU277014), derived from PCR products, revealed that phytoplasma infecting lily were most similar (99.9% to 16S rDNA and 99.7% to rp) to carrot phytoplasma sp. ca2006/5 and also were similar (99.8% to 16SrDNA and 99.2% to rp) to broccoli phytoplasma sp. br273. Both carrot and broccoli phytoplasmas were classified as members of aster yellow 16S rDNA restriction fragment length polymorphism subgroup 16SrI-B (3). Although infection of lilies by aster yellows (‘Ca. phytoplasma asteris’) subgroup 16SrI-B and 16SrI-C was reported from the Czech Republic and Poland, to our knowledge, this is the first report of ‘Ca. phytoplasma asteris’-related strains associated with lily plants in Mexico. References: (1) R. F. Davis et al. Microbiol. Res. 158:229, 2003. (2) S. L. Dellaporta et al. Plant Mol. Biol. Rep. 1:19, 1983. (3) B. Duduk et al. Bull. Insectol. 60 2:341, 2007. (4) I.-M. Lee et al. Int. J. Syst. Evol. Microbiol. 54:337, 2004.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 565-565 ◽  
Author(s):  
D. Adamovic ◽  
I. Djalovic ◽  
P. Mitrovic ◽  
S. Kojic ◽  
R. Pivic ◽  
...  

Peony (Paeonia tenuifolia L.) is a herbaceous perennial plant known for its beautiful and showy flowers. In Serbia it is native to the Deliblato Sands and is used as an ornamental and medicinal plant in folk medicine. This plant species has become a rarity and for that reason peony was introduced into a botanical collection near Backi Petrovac (northern Serbia), where it has been maintained since 1988. Reddening of lower leaves observed on 10% of plants (5 of 50) in the collection at flowering in May 2012 gradually progressed throughout affected plants by the seed maturation stage. Five leaves from each of three reddened and three symptomless plants were sampled at the end of July 2012. Total nucleic acid was extracted separately from individual leaves (30 samples) using the CTAB (cetyltrimethylammonium bromide) method (2). A nested PCR assay using universal primer pairs P1/P7, followed by R16F2n/R16R2 (4), amplified 16S rDNA fragments of 1.8 and 1.2 kb, respectively. DNA from all three reddened plants (15 samples) yielded 1.2-kb amplicons after nested PCRs. Restriction fragment length polymorphism (RFLP) patterns obtained by digestion of nested products with endonucleases AluI, TruI, HpaII, or HhaI (Thermo Scientific, Lithuania) (4) were identical to those of the STOL reference strain included for comparative purposes, indicating that symptoms were consistently associated with plant infection by ‘Ca. Phytoplasma solani’ (Stolbur) phytoplasma. The 16S rDNA amplicons from two peony plants (1.2 kb from B15 and 1.8 from B18) were sequenced (GenBank Accession No. KC960487 and KF614623, respectively). BLAST analysis revealed a 100% identity between the sequences and GenBank sequences of Stolbur phytoplasma, subgroup 16SrXII-A phytoplasma, previously detected in maize (JQ730750) in Serbia and red clover (EU814644.1) in the Czech Republic. Phytoplasma associated diseases of other species of the genus Paeonia (P. lactiflora Pall. and P. suffruticosa Andrews) have been described elsewhere. Disease symptoms on P. lactiflora from Chile were associated with the phytoplasma that belongs to the ribosomal subgroup 16SrVII-A (‘Ca. Phytoplasma fraxini’) (1). Also, Stolbur phytoplasma from the 16SrXII group was detected on P. suffruticosa plants in China, manifesting yellowing symptoms (3). To our knowledge, this is the first report of naturally occurring Stolbur phytoplasma disease of P. tenuifolia L. in Serbia. References: (1) N. Arismendi et al. Bull. Insectol. 64:S95, 2011. (2) X. Daire et al. Eur. J. Plant Pathol. 103:507, 1997. (3) Y. Gao et al. J. Phytopathol. 161:197, 2013. (4) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1504-1504 ◽  
Author(s):  
N. Naderali ◽  
N. Nejat ◽  
Y. H. Tan ◽  
G. Vadamalai

The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV ‘Candidatus Phytoplasma cynodontis’ group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the ‘Candidatus Phytoplasma asteris’ 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 317-317 ◽  
Author(s):  
L. H. Koh ◽  
M. L. Yap ◽  
C. P. Yik ◽  
S. N. Niu ◽  
S. M. Wong

In September of 2005, patches of Cynodon dactylon showing symptoms of bleached leaves were first observed in an open field in Singapore. Samples were collected from this site, from which total DNA was extracted with a Qiagen DNeasy kit (Catalog No 69104) and analyzed for phytoplasma DNA by a PCR assay with phytoplasma universal primer pairs P1/PTint (3). Resulting PCR products were each diluted 1:30 with sterilized distilled water and used in nested PCR with primer pair R16F2n and R16R2 (1). Twenty-five C. dactylon samples were assessed by this means, of which eight of eight with bleached leaves and four of seventeen symptomless samples tested positive. Widened disease surveillance identified the grasses, Axonopus compressus and Paspalum conjugatum, with similar bleached leaf symptoms in December 2006 and May 2007, respectively. Twenty-three of fifty-three A. compressus and six of twenty P. conjugatum samples were detected as positive for phytoplasma infection with the above PCR methods. A comparative analysis of sequences derived from the three grass hosts determined that the phytoplasma infecting C. dactylon (Genbank Accession No. EU234510) was most similar (>99%) to ‘Candidatus Phytoplasma cynodontis’ (GenBank Accession No. AB052871.1), whereas those detected in A. compressus (Genbank Accession No. EU234511) and P. conjugatum (Genbank Accession No. EU234512) were most similar (>99%) to the Brachiaria white leaf phytoplasma (GenBank Accession No. AB052872.1) (2). To our knowledge, this is the first report of phytoplasmas in C. dactylon, A. compressus, and P. conjugatum in Singapore. References: (1) I. M. Lee et al. Int. J. Syst. Evol. Microbiol. 48:1153, 1998. (2) C. Marcone et al. Int. J. Syst. Evol. Microbiol. 54:1077, 2004. (3) C. D. Smart et al. Appl. Environ. Microbiol. 62:2988, 1996.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1475-1475 ◽  
Author(s):  
A. Zwolińska ◽  
K. Krawczyk ◽  
T. Klejdysz ◽  
H. Pospieszny

Winter oilseed rape (Brassica napus L.) is widely grown in Poland to produce vegetable oil for industrial processing of human and animal feed. In recent years, according to European Union directives on the use of biofuels (Directive 2003/30/EC), the area under oilseed rape cultivation in Poland has dramatically increased to 810,000 ha in 2009 and is still increasing. Morphological deformations of winter oilseed rape indicative of phytoplasma infection have been observed sporadically in Poland since 2000 (3). Plants exhibiting floral virescence, phyllody, as well as auxiliary bud proliferation, reduced leaves, and malformation of siliques were identified during surveys of research fields in Wielkopolska during May and June of 2009 and 2010. To confirm phytoplasma infection of these plants, inflorescence and leaf tissues were collected from nine diseased and three symptomless plants from three different field locations with 1 to 16% disease incidence. Total DNA was extracted from each plant tissue sample with a modified cetyltrimethylammoniumbromide method (2). Samples were analyzed for phytoplasma DNA with a nested PCR assay employing phytoplasma universal rRNA operon primer pair P1/P7 followed by R16F2n/R16R2, using previously described conditions (1). PCR products of 1.8 and 1.2 kb were obtained from all diseased plants only following PCRs with P1/P7 and nested primer pair R16F2n/R16R2, respectively. PCR products were not obtained from symptomless plants. Eight 1.2-kb amplicons were sequenced (GenBank Accession Nos. JN193475 to JN193482). Comparative analysis of the R16F2n/R16R2 rDNA sequences confirmed the phytoplasma origin of the rDNA sequences that shared 100 to 99% identity with Maize bushy stunt phytoplasma (GenBank Accession No. HQ530152), Alfalfa stunt phytoplasma (GenBank Accession No. GU289675), Primula green yellows phytoplasma (GenBank Accession No. HM590623), and other aster yellows group phytoplasmas. A 1.8-kb amplicon of isolate designated RzW14 was sequenced (GenBank Accession No. HM561990) and had 99% identity with Aster yellow group phytoplasmas from Lithuania (GenBank Accession Nos.GU223208 and AY744071). A virtual restriction fragment length polymorphism analysis of the 16S rDNA sequences from the R16F2n/R16R2 amplicons was performed with iPhyClassifier (4). Restriction profile comparisons identified all aster yellows group phytoplasmas as subgroup 16SrI-B strains. To our knowledge, this is the first report of a ‘Candidatus Phytoplasma asteris’-related strain infecting oilseed rape in Poland. References: (1) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) A. C. Padovan et al. Aust. J. Grape Wine Res. 1:25, 1995. (3) M. Starzycki and E. Starzycka. Oilseed Crops 21:399, 2000. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
S. Zunnoon-Khan ◽  
R. Michelutti ◽  
Y. Arocha-Rosete ◽  
J. Scott ◽  
W. Crosby ◽  
...  

Prunus persica (L.) Bastch (family Rosaceae) is currently represented by 83 accessions at the Canadian Clonal Genebank. Approximately 3,200 ha are devoted to peach cultivation in Canada where Ontario Province accounts for 82% of the national production. The clonal peach accessions, also located in Ontario, are monitored routinely for symptoms of phytoplasma infection, including rosette-like symptoms (3) that are characterized by new shoots with very short internodes, loss of older shoot leaves leaving only bunches of young leaves on the tips of naked shoots, and flowers that rarely set fruit. From June to August 2009, peach accessions PRU0382 and PRU0445 showed typical peach rosette symptoms, while another 14 accessions exhibited either short internodes or no symptoms. Leaf midrib samples were collected from 16 peach accessions, including 17 symptomatic (from which 8 corresponded to accession PRU0382, 6 for PRU0445, 1 for PRU0335, 1 for PRU0179, and 1 for PRU0451) and 16 asymptomatic (from which 5 corresponded to a representative of each accession PRU0382, PRU0445, PRU0335, PRU0179, and PRU0451 and 11 to other peach accessions). Total DNA was extracted (DNeasy Plant Extraction Mini Kit, QIAGEN, Valencia, CA) from 100 mg of each sample and used as a template in a nested PCR with phytoplasma universal primers R16mF2/R1 (1) and fU5/rU3 (2). Nested PCR products of the expected size (~880 bp) were obtained from all symptomatic samples (14 of 14) of accessions PRU0382 (peach-almond cv. Kando from the Czech Republic) and PRU0445 (peach cv. HW271 from Canada) only. All other plants with or without symptoms yielded no PCR products. Amplicons were purified (Wizard PCR Clean-up, Promega, Madison, WI), cloned in pGEM-T Easy Vector (Promega), and sequenced (Robarts Institute, London, Canada). The resulting 16S rDNA sequences were identical; one of each was archived in GenBank as Accession No. GU223904. BLAST analysis determined that the P. persica phytoplasma sequence shared 99% identity with 16S rDNA sequences of ‘Candidatus Phytoplasma asteris’-related strains. This relationship was also supported by restriction fragment length polymorphism analysis (RFLP) of rDNA amplicons using AluI, RsaI, and MseI endonucleases that yielded fragment profiles indicative of phytoplasmas belonging to group 16SrI (Aster Yellows), subgroup B (16SrI-B). Among phytoplasma diseases, those attributed to group 16SrI strains are most numerous and affect the widest plant host range. They include peach rosette in the United States and Europe (3) as well as diseases of various horticultural crops in Canada, including grapevine (4). To our knowledge, this is the first report of a subgroup 16SrI-B phytoplasma affecting peach in Canada. Early detection of phytoplasmas by PCR in accessions with both European and Canadian origins underscores the importance of prompt identification of infected plants for subsequent thermotherapy treatment to maintain the health of the collection and prevent further disease spread. References: (1) D. E Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:1441, 1996. (2) K. H. Lorenz et al. Phytopathology 85:771, 1995. (3) C. Marcone et al. Acta Hortic. 386:471, 1995. (4) C. Y. Olivier et al. Plant Dis. 93:669, 2009.


Sign in / Sign up

Export Citation Format

Share Document