scholarly journals First Report of Plantago asiatica mosaic virus in Rehmannia glutinosa in Korea

Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 1046-1046 ◽  
Author(s):  
H.-R. Kwak ◽  
M. Kim ◽  
J. Kim ◽  
H.-S. Choi ◽  
J.-K. Seo ◽  
...  
Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 263-263 ◽  
Author(s):  
L. F. Xu ◽  
J. Ming ◽  
S. X. Yuan

Plant Disease ◽  
2021 ◽  
Author(s):  
Xiu Su ◽  
Xiang Zhou ◽  
Yuan Li ◽  
Liangjin Ma ◽  
Xiaofei Cheng ◽  
...  

Heavenly bamboo (Nandina domestica) is an evergreen ornamental plant with worldwide distribution. In May 2018, seven out of twenty N. domestica plants showing virus-like symptoms, such as yellow mosaic and curling, were observed in Lin’an, Zhejiang province. To determine the causal agent, a small RNA library was constructed using the Small RNA v1.5 Sample Prep Kit (Illumina, San Diego, USA) with total RNA extracted from leaves of a symptomatic plant. The library was sequenced by the Solexa platform at BGI Genomics (Shenzhen, China). A total number of 21,071,675 high-quality reads of 17-28 nucleotides (nt) in length remained after trimming adapter sequences and quality control. Reads were assembled using Velvet 0.7.31 and Oases 0.2.07 with the k-mer value of 17 (Schulz et al. 2012). BlastN and BlastX search against the GenBank viral nonredundant sequence databases revealed fifty-six contigs homologous to bean common mosaic virus (BCMV; genus Potyvirus; family Potyviridae). No contig homologous to the genomic sequence of other plant-infecting viruses was identified. These contigs were further assembled into a 9,315-nt fragment by SeqMan Pro 7.1.0 in Lasergene package (DNASTAR, Madison, WI), which covered 92.68% of the genome of BCMV strain CT (BCMV-CT; GenBank accession no. KM076650). The genome of this BCMV isolate (BCMV-NTZ1) was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) using primers designed based on assembled contigs with the Phusion® High-Fidelity DNA Polymerase (New England Biolabs, Beijing, China) and the FirstChoice® RLM-RACE Kit (Invitrogen, Carlsbad, USA), respectively. Amplicons were cloned and Sanger sequenced with three independent clones per amplicon. The genome is 10,052 nt in length excluding the poly-A tail (Genbank accession no. MZ670770) and shared the highest nt sequence identities with BCMV-CT (88.46%). The putative polyprotein shared 93.36% amino acid (aa) sequence identity with that of BCMV-CT. BCMV-NTZ1 also clustered with BCMV-CT in phylogenetic trees based on BCMV full genomes and aa sequences of coat protein. Five-leaf-stage seedlings of Nicotiana tabacum, N. benthamiana, Glycine max (Linn.) Merr., and Capsicum frutescens were mechanically inoculated with sap of BCMV-infected N. domestica leaves at fifteen plants per species. Seedlings of G. max developed virus-like (mosaic and leaf deformity) symptoms (7/15) at 15 days post-inoculation, while other plants remained symptomless throughout the experiment. Subsequent RT-PCR on all the plants using primers 27F1/14Rter and sequencing confirmed the presence and absence of BCMV-NTZ1 in all symptomatic G. max seedlings and other asymptomatic indicator plants, respectively. Subsequent RT-PCR survey further confirmed the association of BCMV with symptomatic heavenly bamboo samples but not asymptomatic plants (7/20). To the best of our knowledge, this is the first report of BCMV naturally infecting heavenly bamboo in China. N. domestica is susceptible to many viruses, e.g., cucumber mosaic virus, plantago asiatica mosaic virus, nandina stem pitting virus, apple stem grooving virus, and alternanthera mosaic virus (Barnett et al. 1973; Ahmed et al. 1983; Hughes et al. 2002, 2005; Tang et al. 2010; Wei et al. 2015). Our results indicate that N. domestica can also serve as an overwinter reservoir for BCMV and special attention should be paid to the damage it may cause.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1799-1799 ◽  
Author(s):  
A. K. Vidal ◽  
R. Camps ◽  
X. Besoain

Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1288 ◽  
Author(s):  
É. Pájtli ◽  
S. Eke ◽  
L. Palkovics

Author(s):  
Kyriaki Sareli ◽  
Konstantinos Gaitanis ◽  
Ioannis T. Tsialtas ◽  
Stephan Winter ◽  
Elisavet K. Chatzivassiliou

2008 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Gandhi Karthikeyan

The ornamental Chinese wisteria (Wisteria sinensis) is a woody perennial grown for its flowering habit in home gardens and landscape settings. In this brief, the occurrence of Wisteria vein mosaic virus (WVMV) was reported for the first time in Chinese wisteria in the United States of America. Accepted for publication 18 June 2008. Published 18 August 2008.


Author(s):  
In-Sook Cho ◽  
Ju-Yeon Yoon ◽  
Eun-Young Yang ◽  
Soo-Young Chae ◽  
Bong Nam Chung ◽  
...  

2018 ◽  
Vol 100 (3) ◽  
pp. 607-607 ◽  
Author(s):  
Pal Salamon ◽  
Anita Sos-Hegedus ◽  
Peter Gyula ◽  
Gyorgy Szittya

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 593-593 ◽  
Author(s):  
Y. K. Chen ◽  
Y. S. Chang ◽  
Y. W. Lin ◽  
M. Y. Wu

Desert rose (Adenium obesum (Forssk.) Roem. & Schult, family Apocynaceae) is native to southeastern Africa, and is a perennial potted ornamental with colorful flowers that are popular in Taiwan. Symptoms of mosaic and chlorotic ringspots and line patterns on leaves were observed in July 2010, on all eight plants in a private garden in Potzu, Chiayi, Taiwan. Spherical virus particles with a diameter of approximately 28 nm were observed in crude sap prepared from symptomatic leaves. Virus culture was established by successive local lesion isolation in Chenopodium quinoa and was maintained in the systemic host Nicotiana tabacum van Hicks. The virus was mechanically transmissible to indicator plants and induced symptoms similar to those incited by Cucumber mosaic virus (CMV). Observed symptoms included local lesions on inoculated leaves of C. amaranticolor and systemic mosaic in Cucumis sativus, Lycopersicon esculentum, N. benthamiana, N. glutinosa, and N. rustica. On N. tabacum, necrotic ringspots developed on inoculated leaves followed by systemic mosaic. Serological tests using ELISA assays and western blotting indicated that the virus reacted positively to a rabbit antiserum prepared to CMV (4). Amplicons of an expected size (1.1 kb) were obtained in reverse transcription-PCR with primers specific to the 3′-half of CMV RNA 3 (3) using total RNA extracted from infected desert rose and N. tabacum. The amplified cDNA fragment was cloned and sequenced (GenBank Accession No. AB667971). Nucleotide sequences of the coat protein open reading frame (CP ORF) (657 nt) had 92 to 96% and 76 to 77% sequence identity to those of CMV in subgroups I (GenBank Accession Nos. NC_001440, D00385, M57602, D28780, and AB008777) and II (GenBank Accession Nos. L15336, AF127976, AF198103, and M21464), respectively. Desert roses infected by Tomato spotted wilt virus (TSWV) (1) and CMV (2) have been reported previously. In spite of the plants showing mosaic symptoms similar to that caused by CMV (2) and chlorotic ringspots and line patterns caused by TSWV (1), only CMV was detected in and isolated from these infected desert roses. However, the possibility of mixed infection of CMV and other viruses were not excluded in this research. To our knowledge, this is the first report of CMV infection in desert rose plants occurring in Taiwan. References: (1) S. Adkins and C. A. Baker. Plant Dis. 89:526, 2005. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) Y. K. Chen et al. Arch. Virol. 146:1631, 2001. (4) Y. K. Chen and C. C. Yang. Plant Dis. 89:529, 2005.


Sign in / Sign up

Export Citation Format

Share Document