scholarly journals First Report of Wisteria vein mosaic virus in Wisteria sinensis in the United States of America

2008 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Gandhi Karthikeyan

The ornamental Chinese wisteria (Wisteria sinensis) is a woody perennial grown for its flowering habit in home gardens and landscape settings. In this brief, the occurrence of Wisteria vein mosaic virus (WVMV) was reported for the first time in Chinese wisteria in the United States of America. Accepted for publication 18 June 2008. Published 18 August 2008.

Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2150023
Author(s):  
HAMIDREZA NAMAZI ◽  
ONDREJ KREJCAR ◽  
ABDULHAMIT SUBASI

SARS-CoV-2 is a deadly virus that has affected human life since late 2019. Between all the countries that have reported the cases of patients with SARS-CoV-2 disease (COVID-19), the United States of America has the highest number of infected people and mortality rate. Since different states in the USA reported different numbers of patients and also death cases, analyzing the difference of SARS-CoV-2 between these states has great importance. Since the generated RNA walk from the SARS-CoV-2 genome includes complex random fluctuations that also contain information, in this study, we employ the complexity and information theories to investigate the variations of SARS-CoV-2 genome between different states in the USA for the first time. The results of our analysis showed that the fractal dimension and Shannon entropy of genome walk significantly change between different states. Based on these results, we can conclude that the SARS-CoV-2 genomic structure significantly changes between different states, which is resulted from the virus evolution. Therefore, developing a vaccine for SARS-CoV-2 is very challenging since it should be able to fight various structures of the virus in different states.


Author(s):  
Martin P. Botha

INTRODUCTIONThe name, Manie van Rensburg, is virtually unknown in Europe and the United States of America. Recently, some of his work was screened at a South African film festival in Amsterdam at the Kriterion cinema and I had the honour to present a lecture there on 7 October 1995 regarding Van Rensburg and his presence in the cinema. His film work was also highlighted in a small retrospective during October 1996 at the Vrije Universiteit Brussel. IT WAS NOT THE FIRST TIME a Van Rensburg film was screened outside the borders of South Africa. During the 1980s Van Rensburg received an International Film Festival of New York award for his historical TV drama series, Heroes, and a Merit Award from the London Film Festival was given to him for his filmed play, The Native who Caused all the Trouble. His mammoth production, The Fourth...


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 324-324 ◽  
Author(s):  
J. Th. J. Verhoeven ◽  
C. C. C. Jansen ◽  
A. W. Werkman ◽  
J. W. Roenhorst

In November 2005, 13 accessions of Petunia hybrida from the United States of America entered the post-entry quarantine station of the Plant Protection Service in the Netherlands. The plants were inspected and tested for quarantine organisms according to Directives 95/44 and 97/46 of the European Union. No virus and viroid symptoms were observed in the imported plants or in mechanically inoculated plants of Chenopodium quinoa, Nicotiana benthamiana, and N. occidentalis-P1 (3). Testing for pospiviroids by return-polyacrylamide gel electrophoresis (1) and reverse transcriptase-PCR with universal pospiviroid primers Pospi1-RE/FW (2) indicated the presence of pospiviroids in 3 and 11 P. hybrida accessions, respectively. The 196-bp amplicons of six accessions were sequenced. Sequence analysis showed the highest identity for all amplicons to both isolates of Tomato chlorotic dwarf viroid (TCDVd) in NCBI GenBank, Accession Nos. AF162131and AY372399, from Canada and the United States, respectively. Additional RT-PCRs with the Pospi1-RE/FW primers in opposite order and the semi-universal pospiviroid primers Vid-RE/FW (2) for one isolate, followed by sequence analysis, confirmed the identity as TCDVd. The isolate consisted of 359 nucleotides (GenBank Accession No. DQ859013) and showed sequence identities of 98.6 and 96.1% to the Canadian and American tomato isolates of this viroid, respectively. The next highest sequence identity was 90.0% to two accessions of Potato spindle tuber viroid (GenBank Accession Nos. AJ593449 and AY962324). On the basis of these results, the viroid from P. hybrida was identified as TCDVd. To our knowledge, this is the first report of TCDVd in this plant species. Reference: (1) J. W. Roenhorst et al. EPPO Bull. 30:453, 2000. (2) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 110:823, 2004. (3) J. Th. J. Verhoeven and J. W. Roenhorst. EPPO Bull. 33:305, 2003.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1473-1473 ◽  
Author(s):  
B. E. Lockhart ◽  
M. L. Daughtrey

Stunting, chlorosis, and light yellow mottling resembling symptoms of nutrient deficiency were observed in angelonia (Angelonia angustifolia) in commercial production in New York. Numerous, filamentous particles 520 to 540 nm long and spherical virus particles 30 nm in diameter were observed by transmission electron microscopy (TEM) in negatively stained partially purified extracts of symptomatic Angelonia leaf tissue. Two viruses, the filamentous potexvirus Alternanthera mosaic virus (AltMV) and the spherical carmovirus Angelonia flower break virus (AnFBV) were subsequently identified on the basis of nucleotide sequence analysis of amplicons generated by reverse transcription (RT)-PCR using total RNA isolated from infected leaf tissue. A 584-bp portion of the replicase-encoding region of the AltMV genome was obtained with the degenerate primers Potex 2RC (5′-AGC ATR GNN SCR TCY TG-3′) and Potex 5 (5′-CAY CAR CAR GCM AAR GAT GA-3′) (3). Forward (AnFBV CP 1F-5′-AGC CTG GCA ATC TGC GTA CTG ATA-3′) and reverse (AnFBV CP 1R-5′-AAT ACC GCC CTC CTG TTT GGA AGT-3′) primers based on the published AnFBV genomic sequence (GenBank Accession No. NC_007733) were used to amplify a portion of the viral coat protein (CP) gene. The nucleotide sequence of the amplicon generated using the potexvirus-specific primers (GenBank Accession No. EU679362) was 99% identical to the published AltMV (GenBank Accession No. NC_007731) sequence and the nucleotide sequence of the amplicon obtained using the AnFBV CP primers was 99% identical to the published AnFBV genomic sequence (GenBank Accession No. EU679363). AnFBV occurs widely in angelonia (1) and AltMV has been identified in phlox (2). These data confirm the presence of AltMV and AnFBV in diseased angelonia plants showing stunting and nutrient deficiency-like symptoms and substantiates, to our knowledge, this first report of AltMV in angelonia in the United States. References: (1) S. Adkins et al. Phytopathology 96:460, 2006. (2) J. Hammond et al. Arch. Virol. 151:477, 2006. (3) R. A. A. van der Vlugt and M. Berendeson. Eur. J. Plant Pathol. 108:367, 2002.


2014 ◽  
Vol 15 (4) ◽  
pp. 151-152 ◽  
Author(s):  
Craig G. Webster ◽  
Erin N. Rosskopf ◽  
Leon Lucas ◽  
H. Charles Mellinger ◽  
Scott Adkins

To the best of our knowledge this is the first report of ToMMV in the United States. Our results provide further characterization of the emerging ToMMV and highlight the continued importance of tobamovirus management in solanaceous crop production. Accepted 9 September 2014. Published 12 October 2014.


1988 ◽  
Vol 66 (4) ◽  
pp. 672-676 ◽  
Author(s):  
A. E. Stahevitch ◽  
W. A. Wojtas

Chromosome number determinations are reported for 58 accessions, comprising 13 native and introduced taxa of Artemisia found in Canada and the United States. Chromosome numbers observed were n = 8, 9, 18, and 27. A chromosome number of 2n = 18 is the first report for A. pacifica Nutt. A new tetraploid cytotype (2n = 36) was found in A. frigida Willd. Supernumerary chromosomes (n = 9 + 3) and mixoploidy (n = 18, 36) were also observed in this taxon for the first time. Heteroploidy was present in several species. In some taxa, morphological or ecological differences between the chromosomal races were detected; in other cases no differences were noted. Karylogical and phylogenetic evidence is presented for the original chromosome number in Artemisia having been x = 9.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1705-1705 ◽  
Author(s):  
O. A. Abdalla ◽  
A. Ali

Alfalfa mosaic virus (AMV), a member of the genus Alfamovirus, family Bromoviridae (1), has been reported in 44 states in the United States excluding Oklahoma. During a cucurbit survey in the summer of 2010, severe mosaic and mottling symptoms were observed on many peppers (Capsicum annuum) and white clover (Trifolium repens) plants in Tulsa, Oklahoma. Symptomatic leaf samples from 15 pepper and two white clover plants were collected in the Bixby area and analyzed serologically by dot-immunobinding assay (DIBA) using specific polyclonal antibodies against AMV (Agdia, Inc). Seven out of 15 pepper samples and both white clover samples were tested positive by DIBA to AMV. The remaining symptomatic samples were positive to Cucumber mosaic virus (CMV). Total RNA was extracted from DIBA positive AMV samples by Tri-reagent method. A small aliquot of total RNA was tested by reverse transcription (RT)-PCR using specific primers: AMV-F 5′ GTCCGCGATCTCTTAAAT 3′ and AMV-R 5′ GAAGTTTGGGTCGAGAGA 3′ that were designed to amplify 900 bp of the AMV-RNA 3. Analysis of the PCR products on agarose gel electrophoreses showed that all tested samples showed a band of the expected size while DIBA negative AMV samples did not produce any band. The amplified PCR product (900 bp) obtained from pepper and white clover were cleaned with PCR purification kit (Qiagen, Germantown, MD) and directly sequenced bi-directionally using the above primers. Sequence analysis confirmed that this virus shared 97% identity at nucleotide sequence with RNA 3 of AMV isolate from Madison-USA (GenBank Accession No. K02703). For biological and morphological characterization of the virus, eight pepper plants were mechanically inoculated using 0.1 M K2HPO4 buffer (pH 7.2) with total RNA extracted from AMV positive pepper or white clover plant samples. One to two weeks post-inoculation, all inoculated plants produced severe mosaic, mottling, and stunting. Virus-like particles preparations were obtained from these symptomatic plants according to our previously described method (2) and electron microcopy examination showed typical AMV particles. These biological and morphological data further confirmed the presence of AMV infecting pepper and clover in Oklahoma. AMV is a significant pathogen worldwide and infects more than 600 species in 70 families, especially alfalfa, pepper, soybean, and tobacco (3). AMV has a worldwide distribution, including the United States, and particularly the Midwestern U.S. where the incidence of the virus is on the rise recently because of the presence of its vector (Aphis glycines) (4). To our knowledge, this is the first report of AMV infecting crops in Oklahoma, which could pose a threat to other economic crops grown in Oklahoma, especially soybean. References: (1) E. E. Mueller et al. Plant Dis. 91:266, 2007. (2) A. Ali et al. Plant Dis. 96:243, 2012. (3) J. F. Bol. Mol. Plant Path.4:1, 2003. (4) M. Malapi-Nelson et al. Plant Dis.93:1259, 2009.


2009 ◽  
pp. 167-180
Author(s):  
Aihwa Ong

- The outsourcing of work is today, for the American middle class, cause of a real obsession. The middle-class, for the first time, fears, from a point of view of working, of being left to drift. The author of this essay tells the complex, and far from obvious, dynamics of purchase of labor between the United States of America and the great new emerging powers (India and China, first of all) in the knowledge economy.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1163-1163 ◽  
Author(s):  
T. Tian ◽  
K. Posis ◽  
C. J. Maroon-Lango ◽  
V. Mavrodieva ◽  
S. Haymes ◽  
...  

In July 2013, a melon (Cucumis melo var. Saski) field in Yolo County, California, was inspected as part of a phytosanitary inspection for seed production. The leaves of the plants showed mosaic, green mottle, and blotches. When plant sap was examined using a transmission electron microscope, rigid rod-shaped particles were observed. Melon plant samples were analyzed by both CDFA and USDA APHIS PPQ laboratories and tested positive using DAS-ELISA against Cucumber green mottle mosaic virus (CGMMV) (Agdia, Elkhart, IN). To confirm the presence of CGMMV, total RNA was analyzed by RT-PCR using primers CGMMV-F5370 5′-CTAATTATTCTGTCGTGGCTGCGGATGC-3′ and CGMMV-R6390 5′-CTTGCAGAATTACTGCCCATA-3′ designed by PPQ based on 21 genomic sequences of CGMMV found worldwide. The 976-bp amplicon was sequenced (GenBank Accession No. KJ453559) and BLAST analysis showed the sequence was 95% identical to MP and CP region of CGMMV isolates reported from Russia (GQ495274, FJ848666), Spain (GQ411361), and Israel (KF155231), and 92% to the isolates from China (KC852074), Korea (AF417243), India (DQ767631), and Japan (D12505). These analyses confirm the virus was CGMMV. To our knowledge, this is the first report of CGMMV in the United States. Based on our sequence data, a second set of primers (CGMMV-F5796 5′-TTGCGTTTAGTGCTTCTTATGT-3′ and CGMMV-R6237 5′-GAGGTGGTAGCCTCTGACCAGA-3′), which amplified a 440-bp amplicon from CGMMV CP region, was designed and used for testing all the subsequent field and seed samples. Thirty-seven out of 40 randomly collected Saski melon samples tested positive for CGMMV, suggesting the virus was widespread in the field. All the melon samples also tested positive for Squash mosaic virus (SqMV) using DAS-ELISA (Agdia). Therefore, the symptoms observed likely resulted from a mixed infection. The melon field affected by CGMMV was immediately adjacent to fields of cucumber (Cucumis sativus var. Marketmore 76) and watermelon (Citrullus lanatus var. Sugar Baby) crops, both for seed production with no barrier between the crops. CGMMV was also detected from symptomatic plants from both fields. Seed lots used for planting all three crops were tested and only the melon seed was positive for CGMMV, suggesting the seed as the source of infection. The sequenced 440-bp RT-PCR amplicons from CGMMV-infected cucumber and watermelon plants and melon seeds were 99% identical to the CGMMV from the field melon. A cucumber plant infected with CGMMV but not SqMV was used for mechanical inoculation at the Contained Research Facility at University of California, Davis. Inoculated cucumber, melon, and watermelon plants showed green mottle and mosaic similar to that observed in the field. CGMMV is a highly contagious virus and damage by this virus on cucurbit crops has been reported in regions where CGMMV is present (2). CGMMV was detected on cucumber grown in greenhouses in Canada with 10 to 15% yield losses reported due to this virus (1). The three cucurbit crops in Yolo County were planted in an isolated area with no other cucurbits nearby. Measures, including destroying all the cucurbit plant material, have been taken to eradicate the virus. Use of CGMMV free cucurbit seed is necessary for prevention of this disease. References: (1) K.-S. Ling et al. Plant Dis. 98:701, 2014. (2) J. Y. Yoon et al. J. Phytopathol. 156:408, 2008.


Sign in / Sign up

Export Citation Format

Share Document