scholarly journals First report of leaf spot disease caused by Stemphylium eturmiunum on American sweetgum (Liquidambar styraciflua L.) in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Li Jin ◽  
Huiyue Chen ◽  
Xiang-rong Zheng ◽  
Minjia Wang ◽  
...  

American sweetgum (Liquidambar styraciflua L.) is an important tree for landscaping and wood processing. In recent years, leaf spots on American sweetgum with disease incidence of about 53% were observed in about 1200 full grown plants in a field (about 8 ha) located in Pizhou, Jiangsu Province, China. Initially, dense reddish-brown spots appeared on both old and new leaves. Later, the spots expanded into dark brown lesions with yellow halos. Symptomatic leaf samples from different trees were collected and processed in the laboratory. For pathogen isolation, leaf sections (4×4mm) removed from the lesion margin were surface sterilized with 75% ethanol for 20s and then sterilized in 2% NaOCl for 30s, rinsed three times in sterile distilled water, incubated on potato dextrose agar (PDA) at 25 °C in the darkness. After 5 days of cultivation, the pure culture was obtained by single spore separation. 6 isolate samples from different leaves named FXA1 to FXA6 shared nearly identical morphological features. The isolate FXA1 (codes CFCC 54675) was deposited in the China Center for Type Culture Collection. On the PDA, the colonies were light yellow with dense mycelium, rough margin, and reverse brownish yellow. Conidiophores (23–35 × 6–10 µm) (n=60) were solitary, straight to flexuous. Conidia (19–34 × 10–21 µm) (n=60) were single, muriform, oblong, mid to deep brown, with 1 to 6 transverse septa. These morphological characteristics resemble Stemphylium eturmiunum (Simmons 2001). Genomic DNA was extracted from mycelium following the CTAB method. The ITS region, gapdh, and cmdA genes were amplified and sequenced with the primers ITS5/ITS4 (Woudenberg et al. 2017), gpd1/gpd2 (Berbee et al. 1999), and CALDF1/CALDR2 (Lawrence et al. 2013), respectively. A maximum likelihood phylogenetic analysis based on ITS, gapdh and cmdA (accession nos. MT898502-MT898507, MT902342-MT902347, MT902336-MT902341) sequences using MEGA 7.0 revealed that the isolates were placed in the same clade as S. eturmiunum with 98% bootstrap support. All seedlings for pathogenicity tests were enclosed in plastic transparent incubators to maintain high relative humidity (90%-100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. For pathogenicity, the conidial suspension (105 spores/ml) of each isolate was sprayed respectively onto healthy leaves of L. styraciflua potted seedlings (2-year-old, 3 replicate plants per isolate). As a control, 3 seedlings were sprayed with sterile distilled water. After 7 days, dense reddish-brown spots were observed on all inoculated leaves. In another set of tests, healthy plants (3 leaves per plant, 3 replicate plants per isolate) were wound-inoculated with mycelial plugs (4×4mm) and inoculated with sterile PDA plugs as a control. After 7 days, brown lesions with light yellow halo were observed on all inoculation sites with the mycelial plugs. Controls remained asymptomatic in the entire experiment. The pathogen was reisolated from symptomatic tissues and identified as S. eturmiunum but was not recovered from the control. The experiment was repeated twice with the similar results, fulfilling Koch’s postulates. S. eturmiunum had been reported on tomato (Andersen et al. 2004), wheat (Poursafar et al. 2016), garlic (L. Fu et al. 2019) but not on woody plant leaves. To our knowledge, this is the first report of S. eturmiunum causing leaf spot on L. styraciflua in the world. This disease poses a potential threat to American sweetgum and wheat in Pizhou.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ju Wu ◽  
Hanrong Wang ◽  
Li Fang ◽  
Yunye Xie ◽  
Lianping Wang

Rubus corchorifolius is one of the most economically important fruit trees, (Tian et al. 2021). A severe leaf spot disease on leaves of R. corchorifolius was observed in Longquan county, Zhejiang province (118°42’E, 27°42’N) in 2019, with disease incidence of more than 20% on affected plants. The symptoms on leaves of the naturally affected plants were early necrotic lesion with white centers, surrounded by yellow halos (< 5 mm). Later, lesions were expanded with yellowish-brown centers, surrounded by yellow halos (< 5 mm). Putative pathogenic fungi were isolated as described by Fang (1998) and two pure single-colony fungal strains (FPZ1 and FPZ2) were selected for further analysis. The fungi was cultured on potato dextrose agar (PDA) medium for 6 days, at 25°C. The colonies had gray-green centers, white aerial mycelium and gelatinous orange conidial masses. The conidia were unicellular, smooth-walled, hyaline, cylindrical with obtuse to rounded ends, the size 10.15 to 14.09 µm (mean = 12.95 µm, n = 50) × 4.36 to 6.19 µm (mean = 5.19 µm, n = 50) were single, brown to dark brown, ovoid or irregular in shape, and 5.59 to 12.99 µm (mean = 8.77 µm, n = 50) × 4.68 to 10.36 µm (mean = 6.50 µm, n = 50). The characteristics of FPZ1 were consistent with the description of species in the Colletotrichum gloeosporioides complex (Weir et al. 2012). The conidia of FPZ2 were hyaline, smooth-walled, one-celled, fusiform, the size 9.34 to 14.09 µm (mean = 11.92 µm, n = 50) × 3.26 to 6.15 µm (mean = 4.89 µm, n = 50). Appressoria were single, darker brown, elliptical or irregular in outline, and 4.49 to 15.06 µm (mean = 9.88 µm, n = 50) × 3.23 to 7.42 µm (mean = 5.72 µm, n = 50) in size. The characteristics of FPZ2 were consistent with species of the Colletotrichum acutatum complex (Damn et al. 2012). For molecular identification of strains, the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-tubulin (TUB), chitin synthase (CHS-1), and actin (ACT) genes were sequenced (Weir et al. 2012). For the strain FPZ1, the five sequences obtain were deposited in GenBank (MT846907, MT849313, MT849317, MT849315 and MT849319, respectively). A BLAST search of FPZ1 sequences showed 99% identity with the five loci sequences of type strain C. fructicola ICMP 18581 (JX010165, JX010033, JX010405, JX009866 and FJ907426) (Jayawardena et al. 2016). Similarly, for the strain FPZ2, the five sequences (MT846885, MT849314, MT849318, MT849316 and MT849320, respectively) had 99% identity with the five loci sequences of type strain C. nymphaeae CBS 515.78 (JQ948197, JQ948527, JQ949848, JQ948858 and JQ949518, respectively) (Jayawardena et al. 2016). Based on morphological characteristics and phylogenetic analysis, FPZ1 was identified as C. fructicola and FPZ2 as C. nymphaeae, respestively. For pathogenicity tests, 10 μL conidial suspension (1 × 106 conidia per ml) of FPZ1 was used to inoculate five healthy, non-wounded detached leaves, while five leaves inoculated with sterilized water served as control. The experiment was repeated three times, and all leaves were kept on a mist bench at 27°C and relative humidity 80% for 6 days. The inoculation sites of both FPZ1 and FPZ2 became brown and necrotic, while control leaves developed no symptoms. C. fructicola and C. nymphaeae were re-isolated from the lesions of inoculated leaves, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. fructicola and C. nymphaeae causing leaf spot on Rubus corchorifolius in China, and reports on the prevalence of C. gloeosporioides and C. acutatum species complexes will be beneficial to management of anthracnose in R. corchorifolius.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Xiang-rong Zheng ◽  
Fengmao Chen

American sweetgum (Liquidambar styraciflua L.) is a forest plant native to North America, which has been introduced into other countries due to its ornamental and medicinal values. In June 2019, symptoms of leaf spots on sweetgum were observed in a field (5 ha) located in Xuzhou, Jiangsu Province, China. On this field, approximately 45% of 1,000 trees showed the same symptoms. Symptoms were observed showing irregular or circular dark brown necrotic lesions approximately 5 to 15 mm in diameter with a yellowish margin on the leaves. To isolate the pathogen, diseased leaf sections (4×4mm) were excised from the margin of the lesion, surface-sterilized with 0.1% NaOCl for 90 s, rinsed 4 times in sterile distilled water, air dried and then transferred on potato dextrose agar (PDA) medium at 25°C in the dark. Pure cultures were obtained by monospore isolation after subculture. Ten purified isolates, named FXI to FXR, were transferred to fresh PDA and incubated as above to allow for morphological and molecular identification. After 7 days, the aerial mycelium was abundant, fluffy and exhibited white to greyish-green coloration. The conidia were dark brown or olive, solitary or produced in chains, obclavate, with 1 to 15 pseudosepta, and measured 45 to 200µm  10 to 18µm. Based on morphological features, these 10 isolates were identified as Corynespora cassiicola (Ellis et al. 1971). Genomic DNA of each isolate was extracted from mycelia using the cetyltrimethylammonium bromide (CTAB) method. The EF-1α gene and ITS region were amplified and sequenced with the primer pairs rDNA ITS primers (ITS4/ITS5) (White et al. 1990) and EF1-728F/EF-986R (Carbone et al.1999) respectively. The sequences were deposited in GenBank. BLAST analysis revealed that the ITS sequence had 99.66% similarity to C. cassiicola MH255527 and that the EF-1α sequence had 100% similarity to C. cassiicola KX429668A. maximum likelihood phylogenetic analysis based on EF-1α and ITS sequences using MEGA 7 revealed that ten isolates were placed in the same clade as C. cassiicola (Isolate: XQ3-1; accession numbers: MH572687 and MH569606, respectively) at 98% bootstrap support. Based on the morphological characteristics and phylogenetic analyses, all isolates were identified as C. cassiicola. For the pathogenicity test, a 10 µl conidial suspension (1×105 spores/ml) of each isolate was dripped onto healthy leaves of 2-year-old sweetgum potted seedlings respectively. Leaves inoculated with sterile water served as controls. Three plants (3 leaves per plant) were conducted for each treatment. The experiment was repeat twice. All seedlings were enclosed in plastic transparent incubators to maintain high relative humidity (90% to 100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. After 10 days, leaves inoculated with conidial suspension of each isolate showed symptoms of leaf spots, similar to those observed in the field. Control plants were remained healthy. In order to reisolate the pathogen, surface-sterilized and monosporic isolation was conducted as described above. The same fungus was reisolated from the lesions of symptomatic leaves, and its identity was confirmed by molecular and morphological approaches, thus fulfilling Koch’s postulates. Chlorothalonil and Boscalid can be used to effectively control Corynespora leaf spot (Chairin T et al.2017). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on L. styraciflua in China.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1007-1007 ◽  
Author(s):  
B. J. Li ◽  
J. X. Chuan ◽  
M. Yang ◽  
G. F. Du

Gynura (Gynura bicolor DC.) is a perennial herbaceous plant in the family Compositae. It is an important Chinese vegetable, and is commonly used as a Chinese herbal medicine. In 2010, a severe leaf spot disease was observed on gynura grown in the main production areas in Tong Nan County, Chongqing City, China. Some farms experienced 60% disease incidence. Symptoms usually began on the lower leaves, as circular to elliptical or irregular spots with concentric rings. Individual spots were dark brown with grayish centers, sometimes coalescing and leading to extensive necrosis. The fungus associated with lesions was characterized as follows: Conidiophores were single or in clusters, straight or flexuous, unbranched, percurrent, cylindrical, pale to dark brown, 87.5 to 375.0 μm long and 5.0 to 10.5 μm wide. Conidia were solitary or catenate, straight to slightly curved, obclavate to cylindrical, 3 to 14 pseudoseptate, 82.8 to 237.5 μm long and 7.0 to 7.8 μm wide, and pale brown. The morphological characteristics of the conidia and conidiophores agreed with the descriptions for Corynespora cassiicola (1). To isolate the causal pathogen, surface-sterilized tissue at the margin of lesions was immersed in 75% ethanol for 30 s, rinsed in sterile water, dried in a laminar flow bench, transferred to PDA, and incubated at 28°C. Four single-spore cultures of the isolates were obtained and named from ZBTK10110637 to ZBTK10110640. All strains were identified as C. cassiicola. The isolate ZBTK10110637 was selected as representative for molecular identification. Genomic DNA was extracted by CTAB (2). The internal transcribed spacer (ITS) region of the rDNA was amplified using primers with ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplicons were 433 bp (GenBank Accession No. JX867272) and shared 100% similarity with that of C. cassiicola (NRC2-1 No. AB539285.1). To confirm pathogenicity, four isolates were used to inoculate 12 gynura plants (6 weeks old) by mist spray-inoculation with 108 spores/ml suspension in sterile distilled water on the leaves. Control plants were misted with sterile distilled water. After inoculation, all plants were incubated in a greenhouse maintained at 20 to 28°C with relative humidity of 80 to 85%. Five days after inoculation, dark brown spots with a grayish center typical of field symptoms were observed on all inoculated plants. No symptoms were seen on water-treated control plants. The fungus was re-isolated from inoculated plants. The morphological characteristics of isolates were identical with the pathogen recovered originally. This is the first report of C. cassiicola on gynura. References: (1) M. B. Ellis. CMI Mycological Papers 65(9):1-15, 1957. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 138-138 ◽  
Author(s):  
B. Z. Fu ◽  
M. Yang ◽  
G. Y. Li ◽  
J. R. Wu ◽  
J. Z. Zhang ◽  
...  

Chinese bean tree, Catalpa fargesii f. duciouxii (Dode) Gilmour, is an ornamental arbor plant. Its roots, leaves, and flowers have long been used for medicinal purposes in China. During July 2010, severe outbreaks of leaf spot disease on this plant occurred in Kunming, Yunnan Province. The disease incidence was greater than 90%. The symptoms on leaves began as dark brown lesions surrounded by chlorotic halos, and later became larger, round or irregular spots with gray to off-white centers surrounded by dark brown margins. Leaf tissues (3 × 3 mm), cut from the margins of lesions, were surface disinfected in 0.1% HgCl2 solution for 3 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA), and incubated at 28°C. The same fungus was consistently isolated from the diseased leaves. Colonies of white-to-dark gray mycelia formed on PDA, and were slightly brown on the underside of the colony. The hyphae were achromatic, branching, septate, and 4.59 (±1.38) μm in diameter on average. Perithecia were brown to black, globose in shape, and 275.9 to 379.3 × 245.3 to 344.8 μm. Asci that formed after 3 to 4 weeks in culture were eight-spored, clavate to cylindrical. The ascospores were fusiform, slightly curved, unicellular and hyaline, and 13.05 to 24.03 × 10.68 to 16.02 μm. PCR amplification was carried out by utilizing universal rDNA-ITS primer pair ITS4/ITS5 (2). Sequencing of the PCR products of DQ1 (GenBank Accession No. JN165746) revealed 99% similarity (100% coverage) with Colletotrichum gloeosporioides isolates (GenBank Accession No. FJ456938.1, No. EU326190.1, No. DQ682572.1, and No. AY423474.1). Phylogenetic analyses (MEGA 4.1) using the neighbor-joining (NJ) algorithm placed the isolate in a well-supported cluster (>90% bootstrap value based on 1,000 replicates) with other C. gloeosporioides isolates. The pathogen was identified as C. gloeosporioides (Penz.) Penz. & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld & H. Schrenk) based on the morphological characteristics and rDNA-ITS sequence analysis (1). To confirm pathogenicity, Koch's postulates were performed on detached leaves of C. fargesii f. duciouxii, inoculated with a solution of 1.0 × 106 conidia per ml. Symptoms similar to the original ones started to appear after 10 days, while untreated leaves remained healthy. The inoculation assay used three leaves for untreated and six leaves for treated. The experiments were repeated once. C. gloeosporioides was consistently reisolated from the diseased tissue. C. gloeosporioides is distributed worldwide causing anthracnose on a wide variety of plants (3). To the best of our knowledge, this is the first report of C. gloeosporioides causing leaf spots on C. fargesii f. duciouxii in China. References: (1) B. C. Sutton. Page 1 in: Colletotrichum: Biology, Pathology and Control. CAB International. Wallingford, UK, 1992. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) J. Yan et al. Plant Dis. 95:880, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 284-284 ◽  
Author(s):  
S. Mahadevakumar ◽  
K. M. Jayaramaiah ◽  
G. R. Janardhana

Lablab purpureus (L.) Sweet (Indian bean) is an important pulse crop grown in arid and semi-arid regions of India. It is one of the most widely cultivated legume species and has multiple uses. During a September 2010 survey, we recorded a new leaf spot disease on L. purpureus in and around Mysore district (Karnataka state) with 40 to 80% disease incidence in 130 ha of field crop studied, which accounted for 20 to 35% estimated yield loss. The symptoms appeared as small necrotic spots on the upper leaf surface. The leaf spots were persistent under mild infection throughout the season with production of conidia in clusters on abaxial leaf surface. A Dueteromyceteous fungus was isolated from affected leaf tissues that were surface sterilized with 2% NaOCl2 solution then washed thrice, dried, inoculated on potato dextrose agar (PDA) medium, and incubated at 28 ± 2°C at 12 h alternate light and dark period for 7 days. The fungal colony with aerial mycelia interspersed with dark cushion-shaped sporodochia consists of short, compact conidiophores bearing large isodiametric, solitary, muricate, brown, globular to pear shaped conidia (29.43 to 23.92 μm). Fungal isolate was identified as Epicoccum sp. based on micro-morphological and cultural features (1). Further authenticity of the fungus was confirmed by PCR amplification of the internal transcribed spacer (ITS) region using ITS1/ITS4 universal primer. The amplified PCR product was purified, sequenced directly, and BLASTn search revealed 100% homology to Epicoccum nigrum Link. (DQ093668.1 and JX914480.1). A representative sequence of E. nigrum was deposited in GenBank (Accession No. KC568289.1). The isolated fungus was further tested for its pathogenicity on 30-day-old healthy L. purpureus plants under greenhouse conditions. A conidial suspension (106 conidia/ml) was applied as foliar spray (three replicates of 15 plants each) along with suitable controls. The plants were kept under high humidity (80%) for 5 days and at ambient temperature (28 ± 2°C). The appearance of leaf spot symptoms were observed after 25 days post inoculation. Further, the pathogen was re-isolated and confirmed by micro-morphological characteristics. E. nigrum has been reported to cause post-harvest decay of cantaloupe in Oklahoma (2). It has also been reported as an endophyte (3). Occurrence as a pathogen on lablab bean has not been previously reported. To our knowledge, this is the first report of the occurrence of E. nigrum on L. purpureus in India causing leaf spot disease. References: (1) H. L. Barnet and B. B. Hunter. Page 150 in: Illustrated Genera of Imperfect Fungi, 1972. (2) B. D. Bruten et al. Plant Dis. 77:1060, 1993. (3) L. C. Fávaro et al. PLoS One 7(6):e36826, 2012.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lei Li ◽  
Yishuo Huang ◽  
Yanxia Shi ◽  
A LI CHAI ◽  
Xuewen Xie ◽  
...  

Coriander (Coriandrum sativum L.) or Chinese parsley is a culinary herb with multiple medicinal effects that are widely used in cooking and traditional medicine. From September to November 2019, symptoms were observed in 2-month-old coriander plants from coriander fields in Lanzhou and Wenzhou, China. The disease developed rapidly under cold and wet climatic conditions, and the infection rate was almost 80% in open coriander fields. Typical symptoms on leaves included small, water-soaked blotches and irregular brown spots surrounding haloes; as the disease progressed, the spots coalesced into necrotic areas. Symptomatic leaf tissue was surface sterilized, macerated in sterile distilled water, and cultured on nutrient agar plates at 28 °C for 48 h (Koike and Bull, 2006). After incubation, six bacterial colonies, which were individually isolated from collected samples from two different areas, were selected for further study. Colonies on NA plate were small, round, raised, white to cream-colored, and had smooth margins. All bacterial isolates were gram-negative, rod-shaped and nonfluorescent on King's B medium. The bacteria were positive for levan production, Tween 80 hydrolysis, and tobacco hypersensitivity but negative for oxidase, potato slice rot test, arginine dihydrolase, ice nucleation activity, indole production and H2S production. The suspension of representative isolate for inoculating of plants was obtained from single colony on King's B medium for 2-3 days at 28 °C. DNA was extracted from bacterial suspensions of YS2003200102 cultured in 20 ml of King’s B medium broth at 28 °C for 1 day. Extraction was performed with a TIANamp Bacterial DNA Kit (TIANGEN, China) according to the manufacturer’s recommendations. The pathogen was confirmed by amplification and sequencing of the glyceraldehyde-3-phosphate dehydrogenase A (gapA) gene, the citrate synthase (gltA) gene, the DNA gyrase B (gyrB) gene and the RNA polymerase sigma factor 70 (rpoD) gene using gapA-For/gapA-Rev, gltA-For/gltA-Rev, gyrB-For/gryB-Rev, rpoD-For/rpoD-Rev primers, respectively (Popović et al., 2019). The sequences of the PCR products were deposited in GenBank with accession numbers MZ681931 (gapA), MZ681932 (gltA), MZ681933 (gyrB), and MZ681934 (rpoD). Phylogenetic analysis of multiple genes (Xu and Miller, 2013) was conducted with the maximum likelihood method using MEGA7. The sequences of our isolates and ten published sequences of P. syringae pv. coriandricola were clustered into one clade with a 100% confidence level. To confirm the pathogenicity of isolate YS2003200102, 2-month-old healthy coriander plants were inoculated by spraying the leaves with a bacterial suspension (108 CFU ml−1) at 28 °C incubation temperature and 70% relative humidity condition, and sterile distilled water was applied as a negative control treatment (Cazorla et al. 2005). Three replicates were conducted for every isolate, and each replicate included 6 coriander plants. After twelve days, only the inoculated leaves with bacterial suspension showed bacterial leaf spot resembling those observed on naturally infected coriander leaves. Cultures re-isolated from symptomatic leaves showed the same morphological characteristics and molecular traits as those initially isolated from infected leaves in the field. This bacterium was previously reported causing leaf spot of coriander in India and Spain (Gupta et al. 2013; Cazorla et al. 2005). To our knowledge, this is the first report of P. syringae pv. coriandricola causing leaf spot disease on coriander in China. Studies are needed on strategies to manage P. syringae pv. coriandricola in crops, because its prevalence may cause yield loss on coriander in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Manlin Xu ◽  
Xia Zhang ◽  
Jing Yu ◽  
zhiqing Guo ◽  
Ying Li ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most economically important crops as an important source of edible oil and protein. In August 2020, circular to oval-shaped brown leaf spots (2-6 mm in diameter) with well-defined borders surrounded by a yellow margin were observed on peanut plant leaves in Laixi City, Shandong Province, China. Symptomatic plants randomly distributed in the field, the incidence was approximately 5%. Leave samples were collected consisted of diseased tissue and the adjacent healthy tissue. The samples were dipped in a 70% (v/v) ethanol solution for 30 s and then soaked in a 0.1% (w/v) mercuric chloride solution for 60 s. The surface-sterilized tissues were then rinsed three times with sterile distilled water, dried and placed on Czapek Dox agar supplemented with 100 μg/ml of chloramphenicol. The cultures were incubated in darkness at 25 °C for 3–5 days. Fungal colonies were initially white and radial, turning to orange-brown in color, with abundant aerial mycelia. Macroconidia were abundant, 4 to 7 septate, with a dorsiventral curvature, and were 3.3–4.5 × 18.5–38.1 μm (n=100) in size; microconidia were absent; chlamydospores were produced in chains or clumps, ellipsoidal to subglobose, and thick walled. The morphological characteristics of the conidia were consistent with those of Fusarium spp. To identify the fungus, an EasyPure Genomic DNA Kit (TransGEN, Beijing, China) was used to extract the total genomic DNA from mycelia. The internal transcribed spacer region (ITS rDNA) and the translation elongation factor 1-α gene (TEF1) were amplified with primers ITS1/ITS4 (White et al. 1990) and EF1/EF2 (O’Donnell et al. 1998), respectively. Based on BLAST analysis, sequences of ITS (MT928727) and TEF1 (MT952337) showed 99.64% and 100% similarity to the ITS (MT939248.1), TEF1 (GQ505636.1) of F. ipomoeae isolates. Sequence analysis confirmed that the fungus isolated from the infected peanut was F. ipomoeae (Xia et al. 2019). The pathogenicity of the fungus was tested in the greenhouse. Twenty two-week-old peanut seedlings (cv. Huayu20) grown in 20-cm pots (containing autoclaved soil) were sprayed with a conidial suspension (105 ml−1) from a 15-day-old culture. Control plants were sprayed with distilled water. The experiment was conducted as a randomized complete block design, and placed at 25 °C under a 12-h photoperiod with 90% humidity. Symptoms similar to those in the field were observed on leaves treated with the conidial suspension ten days after inoculation, but not on control plants. F. ipomoeae was re-isolated from symptomatic leaves but not from the control plants. Reisolation of F. ipomoeae from inoculated plants fulfilled Koch's postulates. To our knowledge, this is the first report of F. ipomoeae causing peanut leaf spot in China. Our report indicates the potential spread of this pathogen in China and a systematic survey is required to develop effective disease management strategies.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 992-992 ◽  
Author(s):  
Y. L. Li ◽  
Z. Zhou ◽  
W. Lu ◽  
J. R. Ye

Sansevieria trifasciata originates from tropical West Africa. It is widely planted as a potted ornamental in China for improving indoor air quality (1). In February 2011, leaves of S. trifasciata plants in an ornamental market of Anle, Luoyang City, China, were observed with sunken brown lesions up to 20 mm in diameter, and with black pycnidia present in the lesions. One hundred potted plants were examined, with disease incidence at 20%. The symptomatic leaves affected the ornamental value of the plants. A section of leaf tissue from the periphery of two lesions from a plant was cut into 1 cm2 pieces, soaked in 70% ethanol for 30 s, sterilized with 0.1% HgCl2 for 2 min, then washed five times in sterilized distilled water. The pieces were incubated at 28°C on potato dextrose agar (PDA). Colonies of two isolates were brown with submerged hyphae, and aerial mycelium was rare. Abundant and scattered pycnidia were reniform, dark brown, and 200 to 350 × 100 to 250 μm. There were two types of setae on the pycnidia: 1) dark brown setae with inward curved tops, and 2) straight, brown setae. Conidia were hyaline, unicellular, cylindrical, and 3.75 to 6.25 × 1.25 to 2.50 μm. Morphological characteristics suggested the two fungal isolates were a Chaetomella sp. To confirm pathogenicity, six mature leaves of a potted S. trifasciata plant were wounded with a sterile pin after wiping each leaf surface with 70% ethanol and washing each leaf with sterilized distilled water three times. A 0.5 cm mycelial disk cut from the margin of a 5-day-old colony on a PDA plate was placed on each pin-wounded leaf, ensuring that the mycelium was in contact with the wound. Non-colonized PDA discs were placed on pin-wounded leaves as the control treatment. Each of two fungal isolates was inoculated on two leaves, and the control treatment was done similarly on two leaves. The inoculated plant was placed in a growth chamber at 28°C with 80% relative humidity. After 7 days, inoculated leaves produced brown lesions with black pycnidia, but no symptoms developed on the control leaves. A Chaetomella sp. was reisolated from the lesions of inoculated leaves, but not from the control leaves. An additional two potted plants were inoculated using the same methods as replications of the experiment, with identical results. To confirm the fungal identification, the internal transcribed spacer (ITS) region of rDNA of the two isolates was amplified using primers ITS1 and ITS4 (2) and sequenced. The sequences were identical (GenBank Accession No. KC515097) and exhibited 99% nucleotide identity to the ITS sequence of an isolate of Chaetomella sp. in GenBank (AJ301961). To our knowledge, this is the first report of a leaf spot of S. trifasciata caused by Chaetomella sp. in China as well as anywhere in the world. References: (1) X. Z. Guo et al. Subtropical Crops Commun. Zhejiang 27:9, 2005. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Sign in / Sign up

Export Citation Format

Share Document