scholarly journals First Report of Powdery Mildew Caused by Erysiphe cruciferarum on Camelina sativa in Montana

Plant Disease ◽  
2021 ◽  
Author(s):  
Benzhong Fu ◽  
Qing Yan

Camelina sativa (L.) Crantz, also known as false flax, is an annual flowering plant in the family Brassicaceae and originated in Europe and Asia. In recent years, it is cultivated as an important biofuel crop in Europe, Canada, and the northwest of the United States. In June of 2021, severe powdery mildew was observed on C. sativa ‘Suneson’ plants under greenhouse conditions (temperature 18.3°C/22.2°C, night/day) in Bozeman, Montana (45°40'N, 111°2'W). The disease incidence was 80.67% (150 pots, one plant per pot). White ectophytic powdery mildew including mycelia and conidia were observed on the upper leaves, usually developed from bottom tissues to top parts, also present on stems and siliques. Mycelia on leaves were amphigenous and in patches, often spreading to become effused. These typical symptoms were similar to a previous report of powdery mildew on Broccoli raab (Koike and Saenz 1997). Appressoria are lobed, and foot cells are cylindrical with size 18 to 26 × 7 to 10 μm. Conidia are cylindrical and produced singly, with a size of 35 to 50 × 12 to 21 μm and a length : width ratio greater than two (Koike and Saenz 1997). No chasmothecia were observed under the greenhouse conditions. The symptoms and fungal microscopic characters are typical of Pseudoidium anamorph of Erysiphe (Braun 1995). The specific measurements and characteristics are consistent with previous records of Erysiphe cruciferarum Opiz ex L. Junell (Braun and Cook 2012; Vellios et al. 2017). To identify the pathogen, the partial internal transcribed spacer (ITS) region of rDNA of sample CPD-1 was amplified using primers ITS1 and ITS4 (White et al. 1990). The amplicons were sequenced, and the resulting 559-bp sequence was deposited in GenBank (CPD-1, Accession number: OK160719). A GenBank BLAST search of the ITS sequences showed an exact match (100% query cover, E-value 0, and 100% identity 559/559 bp) with those of E. cruciferarum on hosts Brassica sp. (KY660929.1), B. juncea from Vietnam (KM260718.1) and China (KT957424.1). A phylogenetic tree was generated with the CPD-1 ITS sequence with several of ITS sequences of close species with different hosts obtained from the GenBank. Isolate CPD-1 was grouped with pathogens from Brassica hosts rather than the holotype strain (KU672364.1) from papaveraceous hosts. To fulfill Koch's postulates, pathogenicity was confirmed through inoculation by dusting conidia onto leaves of seven healthy, potted, 14-day-old C. sativa seedlings (cv. Suneson). Seven non-inoculated plants served as a control treatment. The plants were incubated in a greenhouse with a temperature of 18°C (night) to 22°C (day). The inoculated plants developed similar symptoms after 7 days, whereas the control plants remained symptomless. The fungus on the inoculated plants was morphologically identical to that was originally observed on the diseased plants. Though many Brassica spp. have been known to be infected by E. cruciferarum throughout the world, powdery mildew of C. sativa cultivar Crantz in natural conditions by E. cruciferarum has been reported only in the province of Domokos in Central Greece (Vellios et al. 2017). To our knowledge, this is the first report of powdery mildew caused by E. cruciferarum on C. sativa in Montana. Though the powdery mildew on C. sativa was observed in the greenhouse conditions in this work, it poses a potential threat to the production of this biofuel crop in the northwest of the United States.

Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 975-975 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
S. Frati ◽  
M. L. Gullino

Rudbeckia fulgida (orange coneflower), a flowering plant belonging to the Asteraceae, is increasingly used as a border in parks and gardens. In September 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in a public park in Torino (northern Italy). More than 90% of the plants were affected by the disease. Both surfaces of leaves of affected plants were covered with white mycelia and conidia. As the disease progressed, infected leaves turned yellow and wilted. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in chains (as many as three to four conidia per chain) and measured 34 × 23 (30 to 39 × 21 to 25) μm. Conidiophores measured 129 × 12 (89 to 181 × 11 to 13) μm and showed a foot cell measuring 88 × 12 (48 to 129 × 11 to 13) μm followed by two shorter cells. Fibrosin bodies were absent. Chasmothecia were not observed in the collected samples. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 619 bp showed a 100% homology with the sequence of Golovinomyces cichoracearum (3). The nucleotide sequence has been assigned GenBank Accession No. EU 233820. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy R. fulgida plants. Twenty plants were inoculated. Fifteen noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging from 18 to 22°C. Eight days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. The fungus observed on inoculated plants was morphologically identical to that originally observed. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on R. fulgida in Italy. Powdery mildew on Rudbeckia spp. was previously reported in the United States (4), Poland, and more recently, India and Switzerland. Particularly, in Switzerland the disease has been observed on R. laciniata and R. nitida (2). The economic importance of this disease is currently limited. Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) A. Bolay. Cryptogam. Helv. 20:1, 2005. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (4) D. F. Farr et al. Page 82 in: Fungi on Plants and Plants Products in the United States. The American Phytopathological Society, St Paul, MN, 1989.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1664-1664 ◽  
Author(s):  
S. Moparthi ◽  
M. Bradshaw ◽  
K. Frost ◽  
P. B. Hamm ◽  
J. W. Buck

Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1362-1362
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Potentilla fruticosa L. (bush cinquefoil), belonging to the family Rosaceae, is an ornamental plant used in parks and gardens. During the spring and summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed in several private gardens located near Biella (northern Italy). The adaxial and abaxial surfaces of leaves as well as the stems were covered with white mycelium. Buds and flowers also were affected. As disease progressed, infected leaves turned yellow and dehisced. Conidia formed in chains and were hyaline, ovoid, and measured 24.0 to 36.0 × 15.8 to 24.0 μm (average 30.1 × 20.0 μm). Fibrosin bodies were present. Chasmothecia were numerous, sphaerical, amber colored, and diameters ranged from 84.0 to 98.4 μm (average 90.4 μm). Each chasmothecium contained one ascus with eight ascospores. Ascospores measured 26.5 to 27.2 × 13.2 to 15.6 μm (average 26.8 × 14.0 μm). On the basis of its morphology, the causal agent was determined to be Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu var. aphanis U. Braun (1). Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy P. fruticosa plants. Three plants were inoculated. Three noninoculated plants served as a control. Plants were maintained at temperatures ranging from 12 to 23°C. Ten days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on P. fruticosa in Italy. Erysiphe polygoni D.C. and Sphaerotheca macularis (Wallr.:Fr.) Lind were observed in the United States on P. fruticosa (2), while in Japan, the presence of S. aphanis var aphanis was reported (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) S. Tanda et al. J. Agric. Sci. 39:258, 1995.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 841-841
Author(s):  
H. B. Lee ◽  
H. W. Lee ◽  
H. Y. Mun

Platanus occidentalis L. (sycamore) is an important shade tree distributed throughout the Northern Hemisphere and in South Korea. It has been widely used as an ornamental tree, especially in urban regions and by roadsides. The average rate of roadside planting throughout South Korea covers about 5.7% (up to 38% in Seoul), equivalent to 0.36 million trees. In early July 2012, after a rainy spell in summer, an outbreak of powdery mildew on sycamore was first observed on roadside trees in Gwangju, a southern province of South Korea. A more extensive nationwide survey revealed no powdery mildew in northern or central regions of South Korea. The disease has spread rapidly within Gwangju, even though fungicide applications were carried out after the rainy spell. Major symptoms included white, superficial mycelia, grey to brown lesions on the surface of the leaves due to the presence of a hyperparasite (tentatively identified as Ampelomyces sp.), a slight chlorosis, and severe leaf distortion followed by defoliation. Conidiophores were produced singly, straight, and unbranched, with lengths of 35.2 to 315.2 μm (average 170.4 μm). Conidia were ellipsoid or doliiform, ranging in size from 34.9 to 47.4 μm (average 38.2 μm) long × 16.5 to 26.8 μm (average 23.9 μm) wide. Primary conidia had a truncate base and rounded apex; secondary conidia had both a truncate base and apex. The conidial outer surface had a reticulated wrinkling. Cleistothecia (i.e., sexual spore structures) were not found during the survey, which extended from July to October. These characteristics and the host species match those of Microsphaera platani (syn. Erysiphe platani), which was described on P. occidentalis in Washington State (2). Fungal rDNA was amplified using primers ITS1 and LR5F (4) for one sample (EML-PLA1, GenBank JX485651). BLASTn searches of GenBank revealed high sequence identity to E. platani (99.5% to JQ365943 and 99.3% to JQ365940). Recently, Liang et al. (3) reported the first occurrence of powdery mildew by E. platani on P. orientalis in China based only on its morphology. Thus, in this study, author could only use ITS sequence data from the United States and Europe to characterize the isolate. To date, nine records of powdery mildews of Platanus spp. have been reported worldwide: on P. hispanica from Brazil, Japan, Hungary, and Slovakia; P. orientalis from Israel; P. racemosa from the United States; P. × acerifolia from the United Kingdom and Germany; and Platanus sp. from Argentina and Australia (1). Interestingly, the hyperparasite, Ampelomyces sp., was found with E. platani, suggesting that there may be some level of biocontrol in nature. Pathogenicity was confirmed by gently pressing diseased leaves onto six leaves of healthy sycamore plants in the field in September. The treated leaves were sealed in sterilized vinyl pack to maintain humid condition for 2 days. Similar symptoms were observed on the inoculated leaves 10 days after inoculation. Koch's postulates were fulfilled by re-observing the fungal pathogen. To our knowledge, this is the first report of powdery mildew caused by E. platani on sycamore in South Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ , 2012. (2) D. A. Glawe. Plant Health Progress, doi:10.1094/PHP-2003-0818-01-HN, 2003. (3) C. Liang et al. Plant Pathol. 57:375, 2008. (4) T. J White et al., pp. 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., ed. Academic Press, New York, 1990.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 316-316 ◽  
Author(s):  
T. Jankovics ◽  
L. Kiss ◽  
R. E. Niks ◽  
M. L. Daughtrey

Scabiosa columbaria (Dipsacaceae) is a popular perennial ornamental in the United States. It is native to Europe and was introduced to North America by nursery trade only recently. In the spring of 2006, symptoms of powdery mildew infection were observed on overwintered plants of S. columbaria cv. Butterfly Blue in a nursery in Cutchogue, NY. White powdery mildew mycelia with abundant sporulation were observed on upper and lower leaf surfaces. The portions of leaves with powdery mildew colonies often showed purplish discoloration. Conidia were cylindric to doliiform, measured 20 to 33 × 10 to 15 μm, and were produced singly on 60 to 130 μm long conidiophores consisting of a foot-cell measuring 20 to 50 × 6 to 10 μm, followed by one to three, 12 to 40 μm long cells. Hyphal appressoria were lobed or multilobed. The teleomorph stage was not found. On the basis of these characteristics, the pathogen was identified as an Oidium sp. belonging to the subgenus Pseudoidium. Recently, an anamorphic powdery mildew fungus with similar morphological characteristics, identified as Erysiphe knautiae, was reported on S. columbaria cv. Butterfly Blue in Washington (2). E. knautiae is a common powdery mildew species of dipsacaceous plants such as Scabiosa spp. and Knautia spp. in Europe and Asia (1). To determine whether the fungus reported here was E. knautiae, DNA was extracted from its mycelium, and the internal transcribed spacer (ITS) region of the ribosomal DNA was amplified and sequenced as described earlier (4). No ITS sequences are available in public DNA databases for E. knautiae, thus, we determined this sequence in a specimen of E. knautiae collected from Knautia arvensis in The Netherlands. Herbarium specimens of the Oidium sp. infecting S. columbaria in New York and E. knautiae from the Netherlands were deposited at the U.S. National Fungus Collections under accession numbers BPI 878259 and BPI 878258, respectively. The ITS sequence from Oidium sp. infecting S. columbaria in New York (GenBank Accession No. EU377474) differed in two nucleotides from that of E. knautiae infecting K. arvensis in the Netherlands (GenBank Accession No. EU377475). These two ITS sequences were also more than 99% similar to those of some newly emerged anamorphic powdery mildew fungi: Oidium neolycopersici and other Oidium spp. infecting Chelidonium majus, Passiflora caerulea, and some crassulaceous plants (3,4). Thus, it is unclear whether the fungus reported here was E. knautiae known from Eurasia or an Oidium sp. that has acquired pathogenicity to S. columbaria. To our knowledge, this is the first report of powdery mildew on S. columbaria in New York. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. A. Glawe and G. G. Grove. Online publication. doi:10.1094/PHP-2005-1024-01-BR. Plant Health Progress, 2005. (3) B. Henricot. Plant Pathol. 57:779, 2008. (4) T. Jankovics et al. Phytopathology 98:529, 2008.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 128-128 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

In December 1996 and January 1997, powdery mildew was observed on potted poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants in Monterey County, CA. Mycelia were observed on stems, petioles, mature and immature leaves, and bracts. Severely diseased leaves became twisted and bent and senesced prematurely. The white mycelia were conspicuous, epiphytic, and amphigenous; hyphae measured 4.6 to 6.9 μm in diameter. Growth initially was in patches but eventually became effused. Appressoria were slightly lobed to lobed and sometimes opposite. Conidiophore foot cells were cylindrical, sometimes bent at the base, and slightly flexuous to flexuous. Foot cells measured 30.0 to 46.2 μm × 5.8 to 6.9 μm and were followed by one to two shorter cells. Conidia were cylindrical to slightly doliform and measured 25.4 to 32.3 μm × 11.6 to 18.5 μm. The length-to-width ratios of conidia generally were greater than 2.0. Conidia were produced singly, placing the fungus in the Pseudoidium-type powdery mildew group. Conidia germinated at the ends, and no fibrosin bodies were observed. Cleistothecia were not found. The fungus was identified as an Oidium species. Pathogenicity was demonstrated by gently pressing infected leaves having abundant sporulation onto leaves of potted poinsettia plants (cvs. Freedom Red, Peter Star Marble, and Nutcracker White), incubating the plants in a moist chamber for 48 h, and then maintaining plants in a greenhouse. After 12 to 14 days, powdery mildew colonies developed on the inoculated plants, and the pathogen was morphologically identical to the original isolates. Uninoculated control plants did not develop powdery mildew. This is the first report of powdery mildew on poinsettia in California. This fungus appears similar to Microsphaera euphorbiae but has longer, slightly flexuous foot cells that do not match the description for M. euphorbiae (1,2). An alternative identification would be Erysiphe euphorbiae; however, there are no available mitosporic descriptions for morphological comparisons (1,2). In the United States, powdery mildew of poinsettia previously has been reported in various states in the Pacific Northwest, Midwest, and Northeast. References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 427-427 ◽  
Author(s):  
A. J. Gevens ◽  
G. Maia ◽  
S. A. Jordan

Crotalaria juncea L. (Fabaceae), commonly known as sunn hemp, is a subtropical annual legume grown in the United States as a cover crop that improves soil quality, provides nitrogen, suppresses weeds and nematodes, and adds organic matter to soils. In Florida, sunn hemp is a warm- and short-season cover crop that is typically planted in June and cut and incorporated into soil in September. In 2008, powdery mildew was observed on sunn hemp in a research field in Hastings, FL. This disease is important because it has the potential to impact the health and quality of sunn hemp, and this particular powdery mildew can infect cucurbits that are grown in north Florida from late summer to fall. Fungal growth appeared as typical white, powdery mildew colonies initially seen on upper leaf surfaces, especially along the midvein of infected leaves, but moving to undersides as disease progressed; petioles and floral parts were disease free. As disease progressed, colonies enlarged and coalesced to cover the entire leaf surface; heavily infected leaves senesced and abscised. Infection was primarily seen on the lower, more mature leaves of plants and not on the top 0.6 m (2 feet) of the plant. Mycelia produced white accumulations of conidiophores and conidia. Hyphae were superficial with papillate appressoria and produced conidiophores with cylindrical foot cells that measured 48.5 × 10.0 μm (mean of 100 foot cell measurements) and short chains of conidia. Conidia were hyaline, short-cylindrical to ovoid, lacked fibrosin bodies, borne in chains, had sinuate edge lines with other immature conidia, and measured 22.5 to 40.0 (mean = 29.85 μm) × 12.5 to 20.0 μm (mean = 15.55 μm). The teleomorph was not observed. The nuclear rDNA internal transcribed spacer (ITS) regions were amplified by PCR, using universal primers ITS1 and ITS4, and sequenced (GenBank Accession No. FJ479803). On the basis of morphological characteristics of the asexual, imperfect state that are consistent with published reports of Golovinomyces cichoracearum (2) and ITS sequence data that indicated 100% homology with G. cichoracearum from Helianthus annus (GenBank Accession No. AB077679), this powdery mildew was identified as caused by G. cichoracearum of the classification Golovinomyces Clade III (3). Pathogenicity was confirmed by gently pressing disease leaves onto leaves of healthy C. juncea plants. Inoculated plants were placed into plastic bags containing moist paper towels to maintain high humidity. The temperature was maintained at 24°C, and after 2 days, powdery mildew colonies developed in a manner consistent with symptoms observed under field conditions. A powdery mildew on Crotalaria was previously identified as caused by Microsphaera diffusa Cooke & Peck (1). To our knowledge, this is the first report of G. cichoracearum causing powdery mildew on C. juncea. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) D. A. Glawe et al. Online publication. doi: 10.1094/PHP-2006-0405-01-BR. Plant Health Progress, 2006. (3) S. Takamatsu et al. Mycol. Res. 110:1093, 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1004-1004 ◽  
Author(s):  
M. D. Bolton ◽  
O. T. Neher

The $2.1 billion United States sugar beet (Beta vulgaris L.) industry is the primary provider of domestic sucrose. Sugar beet powdery mildew is caused by Erysiphe polygoni DC and occurs principally in sugar beet growing regions in the western United States. In these regions, the quinone outside inhibitor (QOI) fungicides pyraclostrobin (Headline, BASF, NC) and trifloxystrobin (Gem, Bayer Crop Science, NC) have been important tools to manage powdery mildew since registration in 2002 and 2005, respectively. However, researchers in Idaho reported poor disease management despite QOI application starting in 2011. In 2013, a research plot near Parma, ID, containing natural powdery mildew infection received treatments of pyraclostrobin, trifloxystrobin, or was untreated (control). Since there was no significant reduction in disease levels between QOI-treated blocks and untreated control blocks, experiments were conducted to clone a partial fragment of the E. polygoni cytochrome b (cytb) gene to gain insight into the molecular basis of QOI resistance in this pathosystem. The primers MDB-920 (5′-CACATCGGAAGAGGTTTATA-3′) and MDB-922 (5′-GGTATAGATCTTAATATAGCATAG-3′) were designed based on consensus sequences of several fungal cytb genes obtained from GenBank (data not presented) and used to amplify a 575-bp fragment of the E. polygoni cytb gene using DNA isolated from 12 infected leaf samples collected in September 2013 from the Parma research plot. Each sample consisted of three leaves harvested from three plants (one leaf per plant) in an experimental block. All DNA extraction, PCR, and sequencing procedures were as described previously (1). PCR products derived from six QOI-treated samples and six untreated samples were sequenced directly. Without exception, all QOI-treated samples harbored a point mutation at nucleotide position 143 that encoded a G143A mutation compared with cytb sequence from untreated samples. The two identified cytb haplotypes have been deposited in GenBank under accession numbers KF925325 and KF925326. This is the first report of QOI resistance and the associated cytb G143A mutation in E. polygoni. The G143A mutation has been reported in most QOI-resistant pathogens to date (2). When the G143A mutation dominates in a pathogen population, there is a consistent association with a loss of disease management despite QOI application (3). Careful monitoring and judicious use of QOI fungicides will be necessary to ensure QOI fungicides remain efficacious for sugar beet powdery mildew management in the United States. References: (1) M. D. Bolton et al. Pest Manag. Sci. 69:35, 2013. (2) N. Fisher and B. Meunier. FEMS Yeast Res. 8:183, 2008. (3) U. Gisi et al. Pest Manag. Sci. 58:859, 2002.


Sign in / Sign up

Export Citation Format

Share Document