scholarly journals First Report of Powdery Mildew Caused by Golovinomyces cichoracearum on Crotalaria juncea (‘Tropic Sun’ Sunn hemp)

Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 427-427 ◽  
Author(s):  
A. J. Gevens ◽  
G. Maia ◽  
S. A. Jordan

Crotalaria juncea L. (Fabaceae), commonly known as sunn hemp, is a subtropical annual legume grown in the United States as a cover crop that improves soil quality, provides nitrogen, suppresses weeds and nematodes, and adds organic matter to soils. In Florida, sunn hemp is a warm- and short-season cover crop that is typically planted in June and cut and incorporated into soil in September. In 2008, powdery mildew was observed on sunn hemp in a research field in Hastings, FL. This disease is important because it has the potential to impact the health and quality of sunn hemp, and this particular powdery mildew can infect cucurbits that are grown in north Florida from late summer to fall. Fungal growth appeared as typical white, powdery mildew colonies initially seen on upper leaf surfaces, especially along the midvein of infected leaves, but moving to undersides as disease progressed; petioles and floral parts were disease free. As disease progressed, colonies enlarged and coalesced to cover the entire leaf surface; heavily infected leaves senesced and abscised. Infection was primarily seen on the lower, more mature leaves of plants and not on the top 0.6 m (2 feet) of the plant. Mycelia produced white accumulations of conidiophores and conidia. Hyphae were superficial with papillate appressoria and produced conidiophores with cylindrical foot cells that measured 48.5 × 10.0 μm (mean of 100 foot cell measurements) and short chains of conidia. Conidia were hyaline, short-cylindrical to ovoid, lacked fibrosin bodies, borne in chains, had sinuate edge lines with other immature conidia, and measured 22.5 to 40.0 (mean = 29.85 μm) × 12.5 to 20.0 μm (mean = 15.55 μm). The teleomorph was not observed. The nuclear rDNA internal transcribed spacer (ITS) regions were amplified by PCR, using universal primers ITS1 and ITS4, and sequenced (GenBank Accession No. FJ479803). On the basis of morphological characteristics of the asexual, imperfect state that are consistent with published reports of Golovinomyces cichoracearum (2) and ITS sequence data that indicated 100% homology with G. cichoracearum from Helianthus annus (GenBank Accession No. AB077679), this powdery mildew was identified as caused by G. cichoracearum of the classification Golovinomyces Clade III (3). Pathogenicity was confirmed by gently pressing disease leaves onto leaves of healthy C. juncea plants. Inoculated plants were placed into plastic bags containing moist paper towels to maintain high humidity. The temperature was maintained at 24°C, and after 2 days, powdery mildew colonies developed in a manner consistent with symptoms observed under field conditions. A powdery mildew on Crotalaria was previously identified as caused by Microsphaera diffusa Cooke & Peck (1). To our knowledge, this is the first report of G. cichoracearum causing powdery mildew on C. juncea. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) D. A. Glawe et al. Online publication. doi: 10.1094/PHP-2006-0405-01-BR. Plant Health Progress, 2006. (3) S. Takamatsu et al. Mycol. Res. 110:1093, 2006.

Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 975-975 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
S. Frati ◽  
M. L. Gullino

Rudbeckia fulgida (orange coneflower), a flowering plant belonging to the Asteraceae, is increasingly used as a border in parks and gardens. In September 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in a public park in Torino (northern Italy). More than 90% of the plants were affected by the disease. Both surfaces of leaves of affected plants were covered with white mycelia and conidia. As the disease progressed, infected leaves turned yellow and wilted. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in chains (as many as three to four conidia per chain) and measured 34 × 23 (30 to 39 × 21 to 25) μm. Conidiophores measured 129 × 12 (89 to 181 × 11 to 13) μm and showed a foot cell measuring 88 × 12 (48 to 129 × 11 to 13) μm followed by two shorter cells. Fibrosin bodies were absent. Chasmothecia were not observed in the collected samples. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 619 bp showed a 100% homology with the sequence of Golovinomyces cichoracearum (3). The nucleotide sequence has been assigned GenBank Accession No. EU 233820. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy R. fulgida plants. Twenty plants were inoculated. Fifteen noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging from 18 to 22°C. Eight days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. The fungus observed on inoculated plants was morphologically identical to that originally observed. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on R. fulgida in Italy. Powdery mildew on Rudbeckia spp. was previously reported in the United States (4), Poland, and more recently, India and Switzerland. Particularly, in Switzerland the disease has been observed on R. laciniata and R. nitida (2). The economic importance of this disease is currently limited. Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) A. Bolay. Cryptogam. Helv. 20:1, 2005. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (4) D. F. Farr et al. Page 82 in: Fungi on Plants and Plants Products in the United States. The American Phytopathological Society, St Paul, MN, 1989.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gardenia Orellana ◽  
Alexander V Karasev

Coleus scutellarioides (syn. Coleus blumei) is a widely grown evergreen ornamental plant valued for its highly decorative variegated leaves. Six viroids, named Coleus blumei viroid 1 to 6 (CbVd-1 to -6) have been identified in coleus plants in many countries of the world (Nie and Singh 2017), including Canada (Smith et al. 2018). However there have been no reports of Coleus blumei viroids occurring in the U.S.A. (Nie and Singh 2017). In April 2021, leaf tissue samples from 27 cultivars of C. blumei, one plant of each, were submitted to the University of Idaho laboratory from a commercial nursery located in Oregon to screen for the presence of viroids. The sampled plants were selected randomly and no symptoms were apparent in any of the samples. Total nucleic acids were extracted from each sample (Dellaporta et al. 1983) and used in reverse-transcription (RT)-PCR tests (Jiang et al. 2011) for the CbVd-1 and CbVd-5 with the universal primer pair CbVds-P1/P2, which amplifies the complete genome of all members in the genus Coleviroid (Jiang et al. 2011), and two additional primer pairs, CbVd1-F1/R1 and CbVd5-F1/R1, specific for CbVd-1 and CbVd-5, respectively (Smith et al. 2018). Five C. blumei plants (cvs Fire Mountain, Lovebird, Smokey Rose, Marrakesh, and Nutmeg) were positive for a coleviroid based on the observation of the single 250-nt band in the RT-PCR test with CbVds-P1/P2 primers. Two of these CbVd-1 positive plants (cvs Lovebird and Nutmeg) were also positive for CbVd-1 based on the presence of a single 150-nt band in the RT-PCR assay with CbVd1-F1/R1 primers. One plant (cv Jigsaw) was positive for CbVd-1, i.e. showing the 150-nt band in RT-PCR with CbVd1-F1/R1 primers, but did not show the ca. 250-bp band in RT-PCR with primers CbVds-P1/P2. None of the tested plants were positive for CbVd-5, either with the specific, or universal primers. All coleviroid- and CbVd-1-specific PCR products were sequenced directly using the Sanger methodology, and revealed whole genomes for five isolates of CbVd-1 from Oregon, U.S.A. The genomes of the five CbVd-1 isolates displayed 96.9-100% identity among each other and 96.0-100% identity to the CbVd-1 sequences available in GenBank. Because the sequences from cvs Lovebird, Marrakesh, and Nutmeg, were found 100% identical, one sequence was deposited in GenBank (MZ326145). Two other sequences, from cvs Fire Mountain and Smokey Rose, were deposited in the GenBank under accession numbers MZ326144 and MZ326146, respectively. To the best of our knowledge, this is the first report of CbVd-1 in the United States.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1316-1316 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
L. F. Leandro

Fusarium spp. are widespread soilborne pathogens that cause important soybean diseases such as damping-off, root rot, Fusarium wilt, and sudden death syndrome. At least 12 species of Fusarium, including F. proliferatum, have been associated with soybean roots, but their relative aggressiveness as root rot pathogens is not known and pathogenicity has not been established for all reported species (2). In collaboration with 12 Iowa State University extension specialists, soybean roots were arbitrarily sampled from three fields in each of 98 Iowa counties from 2007 to 2009. Ten plants were collected from each field at V2-V3 and R3-R4 growth stages (2). Typical symptoms of Fusarium root rot (2) were observed. Symptomatic and asymptomatic root pieces were superficially sterilized in 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, and placed onto a Fusarium selective medium. Fusarium colonies were transferred to carnation leaf agar (CLA) and potato dextrose agar and later identified to species based on cultural and morphological characteristics. Of 1,230 Fusarium isolates identified, 50 were recognized as F. proliferatum based on morphological characteristics (3). F. proliferatum isolates produced abundant, aerial, white mycelium and a violet-to-dark purple pigmentation characteristic of Fusarium section Liseola. On CLA, microconidia were abundant, single celled, oval, and in chains on monophialides and polyphialides (3). Species identity was confirmed for two isolates by sequencing of the elongation factor (EF1-α) gene using the ef1 and ef2 primers (1). Identities of the resulting sequences (~680 bp) were confirmed by BLAST analysis and the FUSARIUM-ID database. Analysis resulted in a 99% match for five accessions of F. proliferatum (e.g., FD01389 and FD01858). To complete Koch's postulates, four F. proliferatum isolates were tested for pathogenicity on soybean in a greenhouse. Soybean seeds of cv. AG2306 were planted in cones (150 ml) in autoclaved soil infested with each isolate; Fusarium inoculum was applied by mixing an infested cornmeal/sand mix with soil prior to planting (4). Noninoculated control plants were grown in autoclaved soil amended with a sterile cornmeal/sand mix. Soil temperature was maintained at 18 ± 1°C by placing cones in water baths. The experiment was a completely randomized design with five replicates (single plant in a cone) per isolate and was repeated three times. Root rot severity (visually scored on a percentage scale), shoot dry weight, and root dry weight were assessed at the V3 soybean growth stage. All F. proliferatum isolates tested were pathogenic. Plants inoculated with these isolates were significantly different from the control plants in root rot severity (P = 0.001) and shoot (P = 0.023) and root (P = 0.013) dry weight. Infected plants showed dark brown lesions in the root system as well as decay of the entire taproot. F. proliferatum was reisolated from symptomatic root tissue of infected plants but not from similar tissues of control plants. To our knowledge, this is the first report of F. proliferatum causing root rot on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathologic Society, St. Paul, MN, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (4) G. P. Munkvold and J. K. O'Mara. Plant Dis. 86:143, 2002.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1188-1188 ◽  
Author(s):  
J.-G. Tsay ◽  
R.-S. Chen ◽  
H.-L. Wang ◽  
W.-L. Wang ◽  
B.-C. Weng

Powdery mildew can be found in most papaya (Carica papaya L.) fields during the winter and spring seasons in Taiwan. It usually causes severe yellowing of the leaf lamina and petiole and serious defoliation. Three types of powdery mildew fungi were isolated from papaya leaves in Chiayi City (23.28°N, 120.28°E) at the beginning of 2008. Conidia of the first one were single, globose, hyaline, and 24 to 36 × 14 to 18 μm (average 30.2 × 15.6 μm) without fibrosin bodies and with straight or occasionally flexuous conidiophores at the base. The second one had short pseudo-chains of two to four conidia which were ellipsoidal to ovoid, hyaline, and 24 to 40 × 12 to 16 μm (average 29.7 × 13.4 μm) without fibrosin bodies. The third type had chains of ellipsoidal conidia that were hyaline, 24 to 28 × 12 to 16 μm (average 26.3 × 14.4 μm) and contained fibrosin bodies. To confirm the identity of the three fungi, the internal transcribed spacer (ITS) region of rDNA was amplified using the primer pairs G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/Ed2 (5′-CGC GTA GAG CCC ACG TCG GA-3′), G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/On2 (5′-TGT GAT CCA TGT GAC TGG AA-3′), and S1 (5′-GGA TCA TTA CTG AGC GCG AGG CCC CG-3′)/S2 (5′-CGC CGC CCT GGC GCG AGA TAC A-3′). The alignment of obtained sequences (GenBank Accession Nos. GU358452, 507 bp; GU358451, 580 bp; and GU358450, 455 bp) showed a sequence identity of 100, 99, and 99% with the ITS sequences of Erysiphe diffusa, Oidium neolycopersici, and Podosphaera xanthii (GenBank Accession Nos. FJ378880, EU909694, and GQ927254), respectively. On the basis of morphological characteristics and ITS sequence similarities, these fungi were identified as E. diffusa (Cooke & Peck) U. Braun & S. Takam., O. neolycopersici L. Kiss, and P. xanthii (Castagne) U. Braun & S. Takam., respectively (1,3). Single colonies on papaya leaves infected with powdery mildew were identified in the laboratory and maintained on papaya leaves as inoculum. Pathogenicity was confirmed through inoculations by gently pressing a single colony of each fungus onto leaves of healthy papaya seedlings (cv. Horng-Fe). Five seedlings were inoculated for each fungus and then covered with plastic bags for 2 days. Five noninoculated seedlings served as control. After inoculation, treated plants were maintained separately from the control in different rooms of a greenhouse at 25°C under natural daylight conditions. Seven days after inoculation, typical symptoms of powdery mildew were observed on inoculated plants, but not on noninoculated plants. The same species from diseased lesions following artificial inoculation with each fungus were identified with light microscopy. Papaya was previously described as a host to O. caricae Noack in many tropical and subtropical areas of the world including Taiwan (2). However E. cruciferarum, Golovinomyces cichoracearum, Oidiopsis sicula, O. caricae, O. caricae-papayae, O. caricicola, O. indicum, O. papayae, Ovulariopsis papayae, P. caricae-papayae, P. macularis, P. xanthii, and Streptopodium caricae were reported to infect papaya (4). To our knowledge, this is the first report of papaya powdery mildew caused by E. diffusa and O. neolycopersici in the world and the first report of the three fungi found on papaya in Taiwan. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) H. S. Chien and H. L. Wang. J. Agric. Res. China 33:320, 1984. (3) L. Kiss et al. Mycol. Res. 105:684, 2001. (4) J. R. Liberato et al. Mycol. Res. 108:1185, 2004.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1664-1664 ◽  
Author(s):  
S. Moparthi ◽  
M. Bradshaw ◽  
K. Frost ◽  
P. B. Hamm ◽  
J. W. Buck

Plant Disease ◽  
2020 ◽  
Author(s):  
Mo Zhu ◽  
Jie Ji ◽  
Xiao Duan ◽  
Wenqi Shi ◽  
YongFang Li

Bromus catharticus, rescuegrass, is a brome grass that has been cultivated for herbage production, and been widely naturalized in many provinces of China, including Henan province. During April and May 2020, powdery mildew was found on leaves of Br. catharticus on the campus of Henan Normal University, Xinxiang city (35.3°N; 113.9°E), Henan Province, China. Abundant white or grayish irregular or coalesced circular powdery colonies were scattered on the adaxial surface of leaves and 70% of the leaf areas were affected. Some of the infected leaves either were chlorotic or senescent. About 60% of the observed plants showed powdery mildew symptoms. Conidiophores (n = 25) were 32 to 45 μm × 7 to 15 μm and composed of foot cells and conidia (mostly 6 conidia) in chains. Conidia (n = 50) were 25 to 35 μm × 10 to 15 μm, on average 30 × 13 μm, with a length/width ratio of 2.3. Chasmothecia were not found. Based on these morphologic characteristics, the pathogen was initially identified as Blumeria graminis f. sp. bromi (Braun and Cook 2012; Troch et al. 2014). B. graminis mycelia and conidia were collected, and total genomic DNA was extracted (Zhu et al. 2019). The rDNA internal transcribed spacer (ITS) region was amplified with primer pairs ITS1/ITS4. The amplicon was cloned and sequenced. The sequence (574 bp) was deposited into GenBank under Accession No. MT892940. BLASTn analysis revealed that MT892940 was 100% identical to B. graminis f. sp. bromi on Br. catharticus (AB000935, 550 of 550 nucleotides) (Takamatsu et al. 1998). Phylogenetic analysis of MT892940 and ITS of other B. graminis ff. spp. clearly indicated least two phylogenetically distinct clades of B. graminis f. sp. bromi and that MT892940 clustered with the Takamatsu vouchers. Leaf surfaces of five healthy plants were fixed at the base of a settling tower and then inoculated by blowing conidia from diseased leaves using pressurized air. Five non-inoculated plants served as controls. The inoculated and non-inoculated plants were maintained separately in two growth chambers (humidity, 60%; light/dark, 16 h/8 h; temperature, 18℃). Thirteen- to fifteen-days after inoculation, B. graminis signs and symptoms were visible on inoculated leaves, whereas control plants remained asymptomatic. The pathogenicity assays were repeated twice with the same results. The observed signs and symptoms were morphologically identical to those of the originally infected leaves. Accordingly, the causal organism of the powdery mildew was confirmed as B. graminis f. sp. bromi by morphological characteristics and ITS sequence data. B. graminis has been reported on Br. catharticus in the United States (Klingeman et al. 2018), Japan (Inuma et al. 2007) and Argentina (Delhey et al. 2003). To our best knowledge, this is the first report of B. graminis on Br. catharticus in China. Since hybridization of B. graminis ff. spp. is a mechanism of adaptation to new hosts, Br. catharticus may serve as a primary inoculum reservoir of B. graminis to infect other species (Menardo et al. 2016). This report provides fundamental information for the powdery mildew that can be used to develop control management of the disease in Br. catharticus herbage production.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 433-433 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips. It can also be grown for cut flower production. In April of 2008, in several nurseries located near Biella (northern Italy), a leaf blight was observed on 10 to 15% of potted 30-day-old plants grown on a sphagnum peat substrate at 15 to 20°C and relative humidity of 80 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded over several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and abscised. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates obtained from affected plants successfully anastomosed with tester isolate AG 4 (AG 4 RT 31, obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI with no anastomoses observed between the recovered and tester isolates. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 648-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534555. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Five plants of 30-day-old A. flabellata were grown in 3-liter pots. Inoculum consisting of an aqueous suspension of PDA and mycelium disks (5 g of mycelium + agar per plant) was placed at the collar of plants. Five plants inoculated with water and PDA fragments alone served as control treatments. Plants were maintained in a greenhouse at temperatures between 20 and 24°C. The first symptoms, similar to those observed in the nursery, developed 7 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. The presence of R. solani AG1-IB on A. flabellata has been reported in Japan (4), while in the United States, Rhizoctonia sp. is described on Aquilegia sp. (3). This is, to our knowledge, the first report of leaf blight of A. flabellata caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) E. Imaizumi et al. J. Gen. Plant Pathol. 66:210, 2000.


Sign in / Sign up

Export Citation Format

Share Document