scholarly journals Environmental Conditions Associated with Stripe Rust in Kansas Winter Wheat

Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2306-2312 ◽  
Author(s):  
B. S. Grabow ◽  
D. A. Shah ◽  
E. D. DeWolf

Stripe rust has reemerged as a problematic disease in Kansas wheat. However, there are no stripe rust forecasting models specific to Kansas wheat production. Our objective was to identify environmental variables associated with stripe rust epidemics in Kansas winter wheat as an initial step in the longer-term goal of developing predictive models for stripe rust to be used within the state. Mean yield loss due to stripe rust on susceptible varieties was estimated from 1999 to 2012 for each of the nine Kansas crop reporting districts (CRD). A CRD was classified as having experienced a stripe rust epidemic when yield loss due to the disease equaled or exceeded 1%, and a nonepidemic otherwise. Epidemics were further classified as having been moderate or severe if yield loss was 1 to 14% or greater than 14%, respectively. The binary epidemic categorizations were linked to a matrix of 847 variables representing monthly meteorological and soil moisture conditions. Classification trees were used to select variables associated with stripe rust epidemic occurrence and severity (conditional on an epidemic having occurred). Selected variables were evaluated as predictors of stripe rust epidemics within a general estimation equations framework. The occurrence of epidemics within CRD was linked to soil moisture during the fall and winter months. In the spring, severe epidemics were linked to optimal (7 to 12°C) temperatures. Simple environmentally based stripe rust models at the CRD level may be combined with field-level disease observations and an understanding of varietal reaction to stripe rust as part of an operational disease forecasting system in Kansas.

Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Stanley S. Royal ◽  
Barry J. Brecke ◽  
Daniel L. Colvin

Studies were conducted in Florida to evaluate interference of common cocklebur with peanut. Peanut yield reduction ranged from 0 to 88% for common cocklebur densities of 0–32 plants 8 m−1of peanut row, and predicted loss was similar under normal moisture conditions. When moisture levels were above normal, the impact on yield was 9–24% less than when soil moisture was normal. Common cocklebur caused peanut yield loss if allowed to interfere for more than the first 2 wk after crop emergence, and peanut had to be common cocklebur free for at least 12 wk to prevent a yield reduction. These results show common cocklebur to be more competitive with peanut than other weeds evaluated previously.


2011 ◽  
Vol 101 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D. Sharma-Poudyal ◽  
X. M. Chen

Climatic variation in the U.S. Pacific Northwest (PNW) affects epidemics of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Previous models only estimated disease severity at the flowering stage, which may not predict the actual yield loss. To identify weather factors correlated to stripe rust epidemics and develop models for predicting potential yield loss, correlation and regression analyses were conducted using weather parameters and historical yield loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. Among 1,376 weather variables, 54 were correlated to yield loss of winter wheat and 18 to yield loss of spring wheat. Among the seasons, winter temperature variables were more highly correlated to wheat yield loss than the other seasons. The sum of daily temperatures and accumulated negative degree days of February were more highly correlated to winter wheat yield loss than the other monthly winter variables. In addition, the number of winter rainfall days was found correlated with yield loss. Six yield loss models were selected for each of winter and spring wheats based on their better correlation coefficients, time of weather data availability during the crop season, and better performance in validation tests. Compared with previous models, the new system of using a series of the selected models has advantages that should make it more suitable for forecasting and managing stripe rust in the major wheat growing areas in the U.S. PNW, where the weather conditions have become more favorable to stripe rust.


Author(s):  
Tomáš Mašíček ◽  
František Toman ◽  
Martina Vičanová ◽  
Věra Hubačíková

The aim of the presented paper was to map the course of infiltration during the growing season of 2010 in a winter wheat stand on a selected locality in the Sazomín cadastral area on the basis of selected hydro-physical properties of soil (specific weight, reduced volume weight, actual soil moisture, absorptivity, retention water capacity, porosity, capillary, semi-capillary and non-capillary pores and aeration) evaluated from the analyses of undisturbed soil samples. In order to assess the infiltration capacity of soil at the U Jasana locality in the season April–October, four surveys were realized always with three measurements within each of the surveys. The measurement of infiltration took place in the form of basin irrigation. To evaluate field measurements of infiltration empirical relations were used, namely Kostiakov equations. The highest cumulative infiltration and speed of infiltration were noted in June at the high actual soil moisture and closed stand. In case of October measurement, effects of agro-technical operations became evident on the slightly lower infiltration capacity of soil as compared to June measurements at nearly identical moisture conditions. The lowest infiltration capacity of soil reaching the same level, namely in spite of different moisture conditions and the stand character (July – full-grown stand, August – stubble-field) was found in July and August.


2018 ◽  
Vol 205 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Siegfried Schittenhelm ◽  
Lorenz Kottmann ◽  
Martin Kraft ◽  
Katja Matschiner ◽  
Tina Langkamp‐Wedde

Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 133 ◽  
Author(s):  
Walid El-Feki ◽  
Patrick Byrne ◽  
Scott Reid ◽  
Scott Haley

Due to variable moisture conditions in the U.S. Great Plains, it is important to understand genetic control of crop traits under a range of soil moisture levels. Our objective was to identify quantitative trait loci (QTL) for yield, phenology, and morphological traits in wheat (Triticum aestivum L.) under different soil moisture conditions. Field evaluation of a winter wheat doubled haploid population (n = 185) derived from a cross between CO940610 and ‘Platte’ was carried out in Fort Collins and Greeley, Colorado, USA in 2007–2008 and 2008–2009, respectively. At each location, trials were grown under moderate drought stress and fully irrigated conditions. A total of 33 QTL for 11 traits was detected in two or more environments. A cluster of QTL for nine traits was found on chromosome 2B in the vicinity of the photoperiod response gene Ppd-B1. Other stable QTL clusters were detected on chromosome 6A and near the vernalization response gene Vrn-D3 on chromosome 7D. A QTL for grain yield on chromosome 5A was detected in three environments. With minor exceptions, the large-effect QTL were detected in both the water limited and fully irrigated environments, rather than being detected only under specific moisture levels.


2015 ◽  
Vol 41 (5) ◽  
pp. 787 ◽  
Author(s):  
Shou-Xi CHAI ◽  
Chang-Gang YANG ◽  
Shu-Fang ZHANG ◽  
Heng-Hong CHEN ◽  
Lei CHANG

Sign in / Sign up

Export Citation Format

Share Document