scholarly journals First Report of Fruit Black Spot of Pecan (Carya illinoensis) Caused by Botryosphaeria dothidea in China

Plant Disease ◽  
2021 ◽  
Author(s):  
D. Wang ◽  
Y. B. Zhang ◽  
J. Chang ◽  
K. Meng ◽  
J. P. Shu ◽  
...  
Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1030-1030 ◽  
Author(s):  
S. H. Thomas ◽  
J. M. Fuchs ◽  
Z. A. Handoo

For several years, decline was observed in mature pecan (Carya illinoensis (F.A. Wangenheim) K. Koch) trees in an orchard in Dona Ana County, New Mexico despite normal fertilization and irrigation practices. Affected trees were growing in sandy soil in two widely separated irrigation terraces and exhibited chlorosis of foliage and substantial die-back of branches in the upper canopy. Examination of feeder roots revealed the presence of numerous small galls and egg masses, with root-knot nematode females often visibly protruding from root tissue. Attempts to culture the nematode on tomato (Lycopersicon esculentum Mill. ‘Rutgers’) were unsuccessful. Females and egg masses were collected from fresh pecan roots and sent to the USDA Nematology Laboratory in Beltsville, MD, in October 2000, where specimens were identified as Meloidogyne partityla Kleynhans (1) based on morphological examination. This is the first report of M. partityla from New Mexico, and the second report of this nematode outside South Africa. Starr et al. (2) first reported M. partityla from pecan in the United States in 1996, after recovering the nematode from five orchards in Texas. In their study, the host range of M. partityla was limited to members of the Juglandaceae, which may explain the inability of the New Mexico population to reproduce on tomato. Additional information is needed regarding distribution of this nematode within pecan-growing regions throughout North America. References: (1) K. P. N. Kleynhans. Phytophylactica 18:103, 1986. (2) J. L. Starr et al. J. Nematol. 28:565, 1996.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287 ◽  
Author(s):  
E. Molina-Gayosso ◽  
H. V. Silva-Rojas ◽  
S. García-Morales ◽  
G. Avila-Quezada

Avocado (Persea americana L.) production for export markets has increased in Mexico during the past 10 years. The production system, however, is affected by several sanitation factors, including diseases. During the spring of 2009, smooth, black, circular spots were noted on the surface of avocado fruit. A study was conducted during the winter of 2010 to ascertain the etiology and identify the fungus associated with black spot symptoms on avocado fruit in orchards of Nuevo Parangaricutiro County (19°25′00″ and 102°07′43″) in Michoacan, Mexico. Several fungal isolates were obtained on potato dextrose agar (PDA) from the margin of lesions on immature fruit. The internal transcribed spacer region (ITS) of the rDNA from representative isolates was sequenced with universal primers ITS5 and ITS4 (2). BLAST searches in GenBank showed 100% similarity of the nucleotide sequences with Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips, GenBank Accession Nos. GU188001 to GU188007 and GU187985 to GU187987. A representative nucleotide sequence of this region was deposited in GenBank under the Accession No. JN203129. Strains of N. parvum produced aerial and compact mycelium on acidified PDA, the anamorph state of Botryosphaeria parva. Mycelium was initially white, turning gradually gray to black. Conidia were one celled, hyaline, ellipsoidal to fusiform, externally smooth, thin walled, nonseptate, with one or two septa with age, and an average length and width of 14.5 (9.5 to 19) × 5.8 (4.0 to 7.2) μm (n = 100). Pathogenicity tests were conducted with six avocado fruit cv. Hass. Fruit were inoculated at three evenly spaced locations on the fruit surface, either by wounding the tissue with a needle that had been dipped in a conidial mass from an 8-day-old monoconidial culture of N. parvum strain CIAD-021-11 or by placing 5 μl of 1 × 106 conidia ml–1 suspension on each inoculation site. Inoculated fruit were maintained in a moist chamber at 25°C for 2 weeks. Black lesions appeared on all wounded sites 2 days postinoculation (dpi) and on unwounded sites 4 dpi. The delay of symptom development was likely due to penetration through the lenticels, which took longer to initiate infection. No symptoms were observed in the control fruit. The pathogen was reisolated from the lesions of all inoculated fruit, thus fulfilling Koch's postulates. The results confirmed the pathogenic potential of this fungus and indicated its possible involvement in the etiology of black spot on avocado fruit. N. parvum is a cosmopolitan, plurivorous pathogen causing disease in several hosts of economic importance, such as grapes and kiwi, as well as causing stem-end rot of avocado fruit in New Zealand (1) and avocado twigs in Spain (3). To our knowledge, this is the first report of N. parvum causing black spots on avocado fruit in Mexico. References: (1) W. F. T. Hartill et al. N.Z.J. Crop Hortic. Sci. 30:249. 2002. (2) T. J. White et al. Page: 315 in: PCR Protocols: A Guide to Methods and Application. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990. (3) T. Zea-Bonilla et al. Plant Dis. 91:1052, 2007.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 568-568 ◽  
Author(s):  
D. S. Akgul ◽  
N. G. Savas ◽  
A. Eskalen

The Aegean region (western Turkey) is the center of table, raisin, and wine grape cultivation. During the 2012 growing season, wood canker symptoms were observed in vineyards in Manisa city. Symptoms adjacent to pruning wounds, including shoot dieback and wedge-shaped wood discolorations observed in cross section, were among the most prevalent symptoms of the vines. To identify the causal agents, symptomatic woody tissues were surface disinfested with 95% ethanol and flame-sterilized and the discolored outer bark was cut away. The internal tissues (0.5 cm2) were excised from cankers of vines and plated onto potato dextrose agar amended with tetracycline (0.01%) (PDA-tet). The most frequently isolated fungi, based on general growth pattern, speed of growth, and colony color, resembled species in the Botryosphaeriaceae family. According to morphological characteristics, four different groups have been identified based on visual discrimination. After DNA extraction, ribosomal DNA fragments (ITS1-5.8S-ITS2) (2) amplified with ITS4 and ITS5 primers were sequenced and sequences were compared with those deposited in NCBI GenBank database. Four different Botryosphaeriaceae isolates were identified, including Botryosphaeria dothidea (MBAi25AG), Diplodia seriata (MBAi23AG), Lasiodiplodia theobromae (MBAi28AG), and Neofusicoccum parvum (MBAi27AG) (Accession Nos. KF182329, KF182328, KF182331, and KF182330, respectively) with species nomenclature based on Crous et al. (1). Pathogenicity tests were conducted under greenhouse conditions (24°C, 16/8-h day/night, 70% RH) on 1-year-old own rooted grapevine (Vitis vinifera) cv. Sultana Seedless seedlings using one isolate from each of the Botryosphaeriaceae species specified above. Stems of grapevine seedlings were wounded by removing bark with 4-mm cork borer and fresh mycelial plugs were inoculated into the holes and covered with Parafilm. Sterile PDA plugs were placed into the wounds of control seedlings. Five vines were inoculated per isolate. The experiment was repeated twice. After 4 months of incubation, grapevine seedlings were examined for the extent of vascular discoloration and recovery of fungal isolates. Mean lesion lengths on wood tissues were 85.3, 17.2, 13.9, and 13.1 mm for N. parvum, B. dothidea, L. theobromae, and D. seriata, and 6.3 mm for control. Each fungal isolate was successfully re-isolated from inoculated seedlings to fulfill Koch's postulates. To our knowledge, this is the first report of multiple species in the Botryosphaeriaceae causing wood canker and dieback on grapevine in Turkey. These results are significant because Botryosphaeriaceae species are known causal agents of grapevine trunk disease worldwide (3). References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) B. Slippers et al. Mycologia 96:83, 2004. (3) J. R. Urbez-Torres. Phytopathol. Mediterr. 50:S5, 2011.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
T. S. Schubert ◽  
M. M. Dewdney ◽  
N. A. Peres ◽  
M. E. Palm ◽  
A. Jeyaprakash ◽  
...  

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 μm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 μm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 μm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown ‘Valencia’ sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 420-420 ◽  
Author(s):  
S. Chebil ◽  
R. Fersi ◽  
A. Yakoub ◽  
S. Chenenaoui ◽  
M. Chattaoui ◽  
...  

In 2011, common symptoms of grapevine dieback were frequently observed in 2- to 5-year-old table grape (Vitis vinifera L.) cvs. in four vineyards located in northern Tunisia. The symptoms included dead spur and cordons, shoot dieback, and sunken necrotic bark lesions, which progressed into the trunk resulting in the death of large sections of the vine. Longitudinal and transversal sections of cordons and spurs from symptomatic vines revealed brown wedge-shaped cankers of hard consistency. Twelve symptomatic samples from spur and cordons were collected, surface disinfected by dipping into 5% (v/v) sodium hypochlorite for 2 min, and small pieces from the edge of necrotic and healthy tissue were removed and plated onto potato dextrose agar (PDA) at 25°C in the dark. Based on colony and conidia morphological characteristics, isolates were divided in three species, named Diplodia seriata, Botryosphaeria dothidea, and Neofusicoccum luteum. D. seriata colonies were gray-brown with dense aerial mycelium producing brown cylindric to ellipsoid conidia rounded at both ends and averaged 22.4 × 11.7 μm (n = 50). B. dothidea colonies were initially white with abundant aerial mycelium, gradually becoming dark green olivaceous. Conidia were fusiform to fusiform elliptical with a subobtuse apex and averaged 24.8 × 4.7 μm (n = 50). N. luteum colonies were initially pale to colorless, gradually darkening with age and becoming gray to dark gray producing a yellow pigment that diffuses into the agar. Conidia were hyaline, thin-walled, aseptate, fusiform to fusiform elliptical, and averaged 19.8 × 5.5 μm (n = 50). Identity of the different taxa was confirmed by sequence analyses of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the rDNA and part of the elongation factor 1-alpha (EF1-α) gene. BLAST analysis of sequences indicated that six isolates were identified as D. seriata (GenBank: AY259094, AY343353), one isolate as B. dothidea (AY236949, AY786319) and one isolate as N. luteum (AY259091, AY573217). Sequences were deposited in GenBank under accessions from KC178817 to KC178824 and from KF546829 to KF546836 for ITS region and EF1-α gene, respectively. A pathogenicity test was conducted on detached green shoots cv. Italia for the eight Botryosphaeriaceae isolates. Shoots were inoculated by placing a colonized agar plug (5 mm diameter) from the margin of a 7-day-old colony on fresh wound sites made with a sterilized scalpel. Each wound was covered with moisturized cotton and sealed with Parafilm. Control shoots were inoculated using non-colonized PDA plugs. After 6 weeks, discoloration of xylem and phloem and necrosis with average length of 38.8, 17.6, and 11.2 mm were observed from inoculated shoots with D. seriata, N. luteum, and B. dothidea, respectively, and all three fungi were re-isolated from necrotic tissue, satisfying Koch's postulates. Control shoots showed no symptoms of the disease and no fungus was re-isolated. In Tunisia, Botryosphaeria-related dieback was reported only on citrus tree caused by B. ribis (2), on Pinus spp. caused by D. pinea (4), on Quercus spp. caused by D. corticola (3), and on olive tree (Olea europea) caused by D. seriata (1). To our knowledge, this is the first report of D. seriata, B. dothidea, and N. luteum associated with grapevine dieback in Tunisia. References: (1) M. Chattaoui et al. Plant Dis. 96:905, 2012. (2) H. S. Fawcett. Calif. Citrogr. 16:208, 1931. (3) B. T. Linaldeddu et al. J. Plant Pathol. 91:234. 2009. (4) B. T. Linaldeddu et al. Phytopathol. Mediterr. 47:258, 2008.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3081
Author(s):  
Shengkun Wang ◽  
Junkun Lu ◽  
Sen Meng ◽  
Jie Song ◽  
Junfeng Liang

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2736-2736
Author(s):  
Chun-Yan Gu ◽  
Xue Yang ◽  
Mohamed N. Al-Attala ◽  
Muhammad Abid ◽  
Seinn Sandar May Phyo ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
pp. 47-49 ◽  
Author(s):  
Nicola Wunderlich ◽  
Severino Sousa Costa ◽  
Roni Pati Tpoi ◽  
Gavin James Ash

Sign in / Sign up

Export Citation Format

Share Document