scholarly journals First Report of Bean yellow mosaic virus from Diseased Lupinus luteus in Eastern Washington

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 319-319 ◽  
Author(s):  
N. L. Robertson ◽  
C. J. Coyne

Lupine accessions from the Cool Season Food Legume Seed Collection are grown for seed regenerations in Pullman, WA by the Agricultural Research Service, Western Regional Plant Introduction Station. Selected seed was germinated in the greenhouse and assayed by indirect ELISA using antiserum for potyvirus group detection (Agdia, Inc., Elkhart, IN). Healthy transplants were grown for seed collection on outside plots. In July of 2005, more than 90% of 307 Lupinus luteus L. transplants developed severe yellowing, necrosis, and stunting with an estimated 5% plant death. Plants were heavily infested with aphids and leaf sap was serologically positive for potyvirus. Partially purified virus preparations from infected plants contained filamentous particles and a 35-kDa protein that reacted with universal potyvirus antiserum on western blots. Reverse transcription (RT)-PCR using potyvirus universal primers (2) and cDNA derived from virion RNA generated a ~1.7-kbp product that was cloned and sequenced. The sequenced portion of the genomic RNA contained 1,610 nucleotides (nt) on its 3′-terminus (GenBank Accession No. EU144223) that included a partial nuclear inclusion protein, NIb, (1 to 637 nt) with the conserved amino acid (aa) replicase motif GDD (131 to 139 nt), the coat protein (CP) gene of 821 nt (638 to 1,459 nt), and a 171-nt untranslated region (1,460 to 1,630 nt) attached to a poly(A)tail. The CP sequence contained a NAG motif instead of the DAG motif commonly associated with aphid transmission. Searches in the NCBI GenBank database revealed that the CP aa and nt sequences contained conserved domains with isolates of Bean yellow mosaic virus (BYMV). A pairwise alignment (ClustalX) (4) of the CP aa from 20 BYMV isolates with the BYMV-Pullman isolate revealed identities from 96% (BYMV-S, U47033) to 88% (BYMV-MI [X81124)] -MI-NAT [AF434661]). This meets the species demarcation criteria of more than ~80% identity for inclusion with BYMV (1). Virion mechanical inoculations resulted in local lesions on Chenopodium amaranticolor Coste et Reyn and C. quinoa Willd., necrotic blotches on Phaseolus vulgaris L., and yellow spots and systemic movement in L. succulentus Douglas ex. K. Koch, L. texensis ‘Bluebonnet’, and L. texensis ‘Maroon’; BYMV was confirmed by western blots and ELISA. The experimental inoculations represent the first documented report of BYMV in the annual L. succulentus and biennial L. texensis species. Since BYMV is seedborne and transmitted by many aphid species (3), it is possible that several lupine transplants escaped potyvirus detection, and secondary transmission of BYMV to plants occurred by aphids. During the 1950s, BYMV was confirmed in several annual lupines grown as crops in the southeastern United States (3). To our knowledge, this is the first report of BYMV occurring naturally in a lupine species in Washington. BYMV is a destructive virus to lupine species worldwide and has a wide host range in Fabaceae. This research directly contributes toward the maintenance of virus-free lupine seed for distribution to scientists focusing on lupine research. References: (1) P. H. Berger et al. Family Potyviridae. Page 819 in: Virus Taxonomy: Eighth Report of the ICTV. C. M. Fauquet et al. eds., 2005. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) R. A. C. Jones and G. D. Mclean, Ann. Appl. Biol. 114:609, 1989. (4) J. D. Thompson et al. Nucleic Acids Res. 24:4878, 1997.

Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
N. L. Robertson ◽  
K. L. Brown

In mid-June 2008, distinct mosaic leaves were observed on a cluster of clover (Trifolium spp.) with light pink and white flowers growing at the edge of a lawn in Palmer, AK. Virus minipurification from leaves of affected clover and protein extractions on a polyacrylamide electrophoresis implicated a ~35-kDa putative coat protein (CP). Subsequent western blots and ELISA with a universal potyvirus antiserum (Agdia Inc., Elkhart, IN) confirmed potyvirus identity. Total RNA extracts (RNeasy Plant Mini Kit, Qiagen Inc., Valencia, CA) from the same plant were used for reverse transcription (RT)-PCR. Three sets of degenerate primers that targeted potyvirus-specific genes, HC-Pro (helper component protease) and CI (cylindrical inclusion protein) and the genomic 3′-terminus that included a partial NIb (nuclear inclusion), CP (coat protein), and UTR (untranslated region), produced the expected PCR segments (~0.7, ~0.7, and ~1.6 kbp, respectively) on 1% agarose gels (1). Direct sequencing of the HC-Pro (GenBank No. GQ181115), CI (GQ181116), and CP (GU126690) segments revealed 98, 97, and 99% nucleotide identities (no gaps), respectively, to Bean yellow mosaic virus (BYMV)-chlorotic spot (CS) strain, GenBank No. AB373203. The next closest BYMV percent identity comparisons decreased to 79% for HC-Pro (GenBank No. DQ641248; BYMV-W), 79% for CI (U47033; BYMV-S) partial genes, and 96% for CP (AB041971; BYMV-P242). Mechanical inoculations of purified virus preparations produced local lesions on Chenopodium amaranticolor Coste & A. Reyn. (2 of 5) and C. quinoa Willd. (6 of 7), and mosaic on Nicotiana benthamiana Domin (5 of 5). BYMV was specifically confirmed on tester plants using a double-antibody sandwich (DAS)-ELISA BYMV (strain 204 and B25) kit (AC Diagnostics, Inc., Fayetteville, AR) as directed. The absence of another potyvirus commonly found in clover, Clover yellow vein virus (ClYVV), was verified in parallel DAS-ELISA ClYVV assays (AC Diagnostics, Inc). The BYMV isolate was maintained in N. benthamiana, and virion or sap extracts inoculated to the following host range (number of infected/total inoculated plants [verified by BYMV ELISA]): Cucumis sativus L. ‘Straight Eight’ (0/5), Gomphrena globosa L. (1/4), Nicotiana clevelandii A. Gray (4/7), Phaseolus vulgaris L. ‘Bountiful’ (1/3), Pisum sativum L. (Germplasm Resources Information Network Accession Nos. -PI 508092 (8/12), -W6 17525 (13/13), -W6 17529 (0/13), -W6 17530 (13/14), -W6 17537 (0/12), -W6 17538 (0/12), and -W6 17539 (0/21), Tetragonia tetragoniodes (2/2), Trifolium pretense L. ‘Altaswede’ (6/10), T. repens L. ‘Pilgrim’ (0/8), and Vicia faba L. (1/3). All infected plants had symptoms ranging from systemic mosaic (T. pretense, P. sativum) to leaf distortions (N. clevelandii, Tetragonia tetragoniodes). Interestingly, the host range and genomic sequences of the BYMV Alaskan strain resemble the BYMV-CS (chlorotic spot) strain that was originally isolated from a diseased red clover (T. pretense) plant in Japan more than 40 years ago (2). Although BYMV occurs worldwide and has a wide host range in dictoyledonous and monocotyledonous plants (3), to our knowledge, this is the first report of a natural occurrence of BYMV in Alaska. The incidence and distribution of BYMV in clover and other plant species are not known in Alaska. References: (1) C. Ha et al. Arch. Virol. 153:36, 2008. (2) H. Kume et al. Mem. Fac. Agric. Hokkaido Univ. 7:449, 1970. (3) S. J. Wylie et al. Plant Dis. 92:1596, 2008.


2020 ◽  
Vol 102 (3) ◽  
pp. 923-924
Author(s):  
Lidiya Mishchenko ◽  
Alina Dunich ◽  
Andrei Smertenko ◽  
Anna Dashchenko ◽  
Roksolana Sovinska ◽  
...  

Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1557-1557 ◽  
Author(s):  
Y. N. Wang ◽  
M. J. Melzer ◽  
W. B. Borth ◽  
J. C. Green ◽  
I. Hamim ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 897-897 ◽  
Author(s):  
A. Kumari ◽  
C. Kaur ◽  
S. Kumar ◽  
S. K. Raj ◽  
R. K. Roy ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 168 ◽  
Author(s):  
D. Wang ◽  
J. Ocenar ◽  
I. Hamim ◽  
W. B. Borth ◽  
M. T. Fukada ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1399-1399 ◽  
Author(s):  
H. Pospieszny ◽  
M. Cajza ◽  
R. Plewa

In June 2002, mosaic and interveinal chlorosis were observed on two cucumber plants (Cucumis sativus) grown in one commercial greenhouse in the western region of Poland. Electron microscopic examination of leaf-dip preparations from infected plants showed flexuous filamentous virus particles typical of potyviruses (720 to 750 nm long). Chenopodium amaranticolor, Chenopodium quinoa, Citrullus lanatus, C. melo, C. sativus, Cucurbita maxima, Cucurbita pepo, Cucurbita pepo cv. Giromontiina, Cucurbita pepo cv. Patissoniana, Nicotiana benthamiana, and N. tabacum were mechanically inoculated with sap from symptomatic cucumber leaves. The virus caused local chlorotic lesions on Chenopodium amaranticolor and Chenopodium quinoa and systemic infection in all tested cucurbits but it did not infect tobacco plants. Reverse transcription-polymerase chain reaction (RT-PCR) amplification of the 3′ end of the genomic RNA was done by using P9502 as a downstream primer and degenerate CPUP as an upstream primer to amplify a highly conserved region of the potyviral coat protein (1). The PCR products were directly sequenced with the CEQ DTCS dye terminator cycle sequencing kit (Beckman Coulter, Inc., Fullerton, CA), and the analysis of dideoxy terminated fragments was conducted by capillary electrophoresis using a CEQ 2000 DNA Analysis System (Beckman Coulter, Inc.). The obtained 684 nt sequence (GenBank Accession No. AY347476) was almost identical with sequences of Zucchini yellow mosaic virus (ZYMV) isolates from Austria (GenBank Accession Nos. AJ420012-AJ420019 and AJ420027) and Hungary (GenBank Accession Nos. AJ459954 and AJ459955). The above suggested that the Polish isolate of ZYMV belonged to the Central European branch of the phylogenetic tree (2). To our knowledge, this is the first report of ZYMV in Poland. References: (1) R. A. A. van der Vlugt et al. Phytopathology 89:148, 1999. (2) I. Tobias and L. Palkovics. Pest Manage. Sci. 59:493, 2003.


2003 ◽  
Vol 54 (9) ◽  
pp. 849 ◽  
Author(s):  
R. A. C. Jones ◽  
B. A. Coutts ◽  
Y. Cheng

The yield losses caused by necrotic and non-necrotic strains of Bean yellow mosaic virus (BYMV) in narrow-leafed lupin (Lupinus angustifolius) were quantified in field experiments. Clover plants infected with either were introduced into plots to provide infection sources, and aphids spread infection to the lupin plants. When the effects of virus infection were examined in individual lupin plants infected with necrotic BYMV, they were killed by early infection so there was no seed production. With late infection, shoot dry wt, seed yield, and seed number were decreased by at least 55%, 80%, and 74%, respectively. With non-necrotic BYMV, shoot dry wt, seed yield, and seed number diminished with increasing duration of plant infection, these decreases ranging over 27–88%, 48–99%, and 35–98% for late to early infection, respectively. In partially infected stands in which both necrotic and non-necrotic BYMV were spreading, an additional incidence of 28% in plots with introduced non-necrotic strain foci over that in plots without introduced foci was sufficient to decrease overall seed yield significantly. However, an additional incidence of 10% was insufficient to do so in plots with introduced necrotic strain foci. In plots into which different numbers of clover plants infected with non-necrotic BYMV were introduced, subsequent incidence of infection depended on the magnitude of the initial virus source, and yield was decreased by 21–24%, 31–43%, and 64–66% with 4, 8, or 16 foci/plot, respectively. With both types of strain, yield loss in infected plants was mainly due to failure to produce any seed or to fewer seeds being produced, but smaller seed size also contributed. These results show that non-necrotic strains of BYMV have considerable yield-limiting potential in narrow-leafed lupin crops despite causing milder symptoms than necrotic strains. No evidence was obtained of seed-transmission of non-necrotic BYMV in narrow-leafed lupin, but a 0.2% seed transmission rate was detected in yellow lupin (Lupinus luteus).


Sign in / Sign up

Export Citation Format

Share Document