scholarly journals First Report of Bean yellow mosaic virus in Alaska from Clover (Trifolium spp.)

Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
N. L. Robertson ◽  
K. L. Brown

In mid-June 2008, distinct mosaic leaves were observed on a cluster of clover (Trifolium spp.) with light pink and white flowers growing at the edge of a lawn in Palmer, AK. Virus minipurification from leaves of affected clover and protein extractions on a polyacrylamide electrophoresis implicated a ~35-kDa putative coat protein (CP). Subsequent western blots and ELISA with a universal potyvirus antiserum (Agdia Inc., Elkhart, IN) confirmed potyvirus identity. Total RNA extracts (RNeasy Plant Mini Kit, Qiagen Inc., Valencia, CA) from the same plant were used for reverse transcription (RT)-PCR. Three sets of degenerate primers that targeted potyvirus-specific genes, HC-Pro (helper component protease) and CI (cylindrical inclusion protein) and the genomic 3′-terminus that included a partial NIb (nuclear inclusion), CP (coat protein), and UTR (untranslated region), produced the expected PCR segments (~0.7, ~0.7, and ~1.6 kbp, respectively) on 1% agarose gels (1). Direct sequencing of the HC-Pro (GenBank No. GQ181115), CI (GQ181116), and CP (GU126690) segments revealed 98, 97, and 99% nucleotide identities (no gaps), respectively, to Bean yellow mosaic virus (BYMV)-chlorotic spot (CS) strain, GenBank No. AB373203. The next closest BYMV percent identity comparisons decreased to 79% for HC-Pro (GenBank No. DQ641248; BYMV-W), 79% for CI (U47033; BYMV-S) partial genes, and 96% for CP (AB041971; BYMV-P242). Mechanical inoculations of purified virus preparations produced local lesions on Chenopodium amaranticolor Coste & A. Reyn. (2 of 5) and C. quinoa Willd. (6 of 7), and mosaic on Nicotiana benthamiana Domin (5 of 5). BYMV was specifically confirmed on tester plants using a double-antibody sandwich (DAS)-ELISA BYMV (strain 204 and B25) kit (AC Diagnostics, Inc., Fayetteville, AR) as directed. The absence of another potyvirus commonly found in clover, Clover yellow vein virus (ClYVV), was verified in parallel DAS-ELISA ClYVV assays (AC Diagnostics, Inc). The BYMV isolate was maintained in N. benthamiana, and virion or sap extracts inoculated to the following host range (number of infected/total inoculated plants [verified by BYMV ELISA]): Cucumis sativus L. ‘Straight Eight’ (0/5), Gomphrena globosa L. (1/4), Nicotiana clevelandii A. Gray (4/7), Phaseolus vulgaris L. ‘Bountiful’ (1/3), Pisum sativum L. (Germplasm Resources Information Network Accession Nos. -PI 508092 (8/12), -W6 17525 (13/13), -W6 17529 (0/13), -W6 17530 (13/14), -W6 17537 (0/12), -W6 17538 (0/12), and -W6 17539 (0/21), Tetragonia tetragoniodes (2/2), Trifolium pretense L. ‘Altaswede’ (6/10), T. repens L. ‘Pilgrim’ (0/8), and Vicia faba L. (1/3). All infected plants had symptoms ranging from systemic mosaic (T. pretense, P. sativum) to leaf distortions (N. clevelandii, Tetragonia tetragoniodes). Interestingly, the host range and genomic sequences of the BYMV Alaskan strain resemble the BYMV-CS (chlorotic spot) strain that was originally isolated from a diseased red clover (T. pretense) plant in Japan more than 40 years ago (2). Although BYMV occurs worldwide and has a wide host range in dictoyledonous and monocotyledonous plants (3), to our knowledge, this is the first report of a natural occurrence of BYMV in Alaska. The incidence and distribution of BYMV in clover and other plant species are not known in Alaska. References: (1) C. Ha et al. Arch. Virol. 153:36, 2008. (2) H. Kume et al. Mem. Fac. Agric. Hokkaido Univ. 7:449, 1970. (3) S. J. Wylie et al. Plant Dis. 92:1596, 2008.

Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 574-574 ◽  
Author(s):  
M. A. Guaragna ◽  
R. L. Jordan ◽  
M. L. Putnam

Verbena × hybrida is an ornamental annual used in rock gardens as an edging plant and hanging baskets. It comes in a variety of colors and grows approximately 1.5 to 2.5 cm (6 to 10 inches) high. In the spring of 2002, verbena cv. Lavender Shades plants from California showing leaf mosaic symptoms tested positive for potyvirus using an antigen-coated plate enzyme-linked immunosorbent assay with our genus Potyvirus broad spectrum reacting PTY-1 monoclonal as the detecting antibody (3). The virus was transmitted mechanically to Nicotiana benthamiana by sap inoculation from infected verbena plants. Infected tobacco showed systemic mild mosaic symptoms. Total RNA extractions from infected verbena and tobacco leaves were used in reverse transcription-polymerase chain reaction (RT-PCR) assays with generic potyvirus-specific primers that amplify highly conserved 700-bp or 1,600-bp fragments from the 3′ terminus of most potyviruses. This region includes the 3′ noncoding region (3′NCR) and the potyviral coat protein (CP). The PCR-amplified fragments were cloned by using standard TA cloning procedures and sequenced using dye-terminator chemistry. The cloned nucleotide and putative coat protein amino acid sequences from the infected verbena and tobacco plants were compared with the corresponding regions of other potyviruses. Amino acid comparison of the CP region of the verbena po-tyvirus showed 95 to 96% identity to four pea mosaic strains (PMV) of Bean yellow mosaic virus (BYMV), 85 to 89% identity to 20 other strains of BYMV, 74 to 76% identity with six strains of Clover yellow vein virus (CYVV), and only 50 to 64% identity with 28 other potyviruses. Pairwise comparisons among and between the CP sequences of PMV, BYMV, CYVV, and other potyviruses revealed identities of 92 to 99% for BYMV∷ BYMV, PMV∷PMV, and CYVV∷CYVV; 84 to 89% for BYMV∷ PMV, 69 to 78% for BYMV∷CYVV and PMV∷CYVV, and 50 to 64% for all other potyvirus combinations. Additionally, similar pairwise analysis of the 3′NCR of the verbena potyvirus revealed 98 to 99% identity to PMV strains, 81 to 94% to other BYMVs, 68 to 75% to CYVVs, and 52 to 64% with other potyviruses. Other 3′NCR pairwise comparisons generally revealed the same identity trend as described for the CP. Further serological analysis with our panel of BYMV-specific, BYMV-subgroup, and potyvirus cross-reactive monoclonal antibodies (3) confirmed the designation of the verbena potyvirus isolate as a pea mosaic strain of BYMV. To our knowledge this is the first confirmed report of BYMV-pea mosaic strain in Verbena (1,2). References: (1) Agdia, Inc. Positive Ornamental Plant Samples. Agdia On-line Publication, 2003. (2) A. A. Brunt et al. Verbena hybrida. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version 20. On-line publication, August 1996. (3) R. L. Jordan, and J. Hammond. J. Gen. Virol. 72:1531, 1991.


2009 ◽  
Vol 99 (5) ◽  
pp. 512-518 ◽  
Author(s):  
S. J. Wylie ◽  
R. A. C. Jones

Seven complete genomes and 64 coat protein gene sequences belonging to Bean yellow mosaic virus (BYMV) isolates from different continents were examined for evidence of genetic recombination using six different recombination-detection programs. In the seven complete genomes and a single complete genome of the related virus Clover yellow vein virus (ClYVV), evidence for eight recombination patterns was found by four or more programs, giving firm evidence of their presence, and five additional recombination patterns were detected by three or fewer programs, giving tentative evidence of their occurrence. When the nucleotide sequences of 64 BYMV and one ClYVV coat protein genes were analyzed, three firm recombination patterns were detected in 21 isolates (32%). With another six isolates (9%), tentative evidence was found for three further recombination patterns. Of the 19 firm or tentative recombination patterns detected within and between strain groups of BYMV, and with ClYVV, 12 involved a generalist group of isolates as a parent but none of the other BYMV groups acted as parents more than six times. These findings suggest that recombination played an important role in the evolution of BYMV strain groups that specialize in infecting particular groups of domesticated plants.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 702-702 ◽  
Author(s):  
I. Malandraki ◽  
N. Vassilakos ◽  
C. Xanthis ◽  
G. Kontosfiris ◽  
N. I. Katis ◽  
...  

In the summer of 2012, zucchini (Cucurbita pepo L.) plants of F1 hybrid Rigas showing very severe malformation and blisters in leaves and fruit were observed in the prefectures of Ilia and Messinia, Peloponnese, southwestern Greece. Over 100 samples were collected and only a few were found by double antibody sandwich (DAS)-ELISA to be singly or mixed infected with the commonly encountered Cucumber mosaic virus (CMV, genus Cucumovirus), Zucchini yellow mosaic virus (ZYMV, genus Potyvirus), and Watermelon mosaic virus (WMV, genus Potyvirus), to which Rigas is known to be tolerant. All affected plants were also tested by DAS-ELISA and RT-PCR (2) for the presence of Moroccan watermelon mosaic virus (MWMV; genus Potyvirus), a virus not previously reported in Greece, and were consistently found positive by both methods. Sap from plants in which MWMV was solely detected was used to mechanically inoculate Chenopodium quinoa Willd. and cucurbit species (zucchini, cucumber, melon, and watermelon). C. quinoa produced chlorotic local lesions, while cucurbits showed very severe mosaic and malformation of leaves. Zucchini plants of F1 hybrids Rigas, Golden (tolerant to WMV and ZYMV), and Elion (not exhibiting any tolerance) grown in a screenhouse produced equivalent severe symptoms on leaves and fruits. Furthermore, transmission experiments in a non-persistent manner using a clone of Myzus persicae Sulz. and zucchini plants of F1 hybrid Boreas as donor and test plants were carried out. Ten plants were used in each experiment (one aphid/plant) and this was repeated five times (50 plants in total). The transmission rate was high ranging from 75 to 90%. RT-PCR obtained amplicons of 627 bp were subjected to direct sequencing (GenBank Accession No KF772944), which revealed 99% sequence identity to the corresponding region of a MWMV Tunisian isolate (EF579955). In 2013, in addition to zucchini plants found MWMV positive, watermelon (Citrullus lanatus Thunb.) plants from the same region of Peloponnese showing leaf malformation and mosaic symptoms were found MWMV positive (4/30) by DAS-ELISA and RT-PCR, revealing the virus establishment and further spread. In the Mediterranean basin, the virus has already been reported in Morocco, Italy, France, Spain, Tunisia, and Algeria, where it has emerged recently from a common source, has quickly become established through rapid dissemination and is considered as an important emerging threat (4). Isolates from these countries, including the present one from Greece, are very closely molecularly related to each other, contrary to isolates from sub-Saharan Africa (South Africa, Sudan, Congo, Zimbabwe, Niger, Cameroon, Nigeria) that are much more divergent (1,3). To our knowledge, this is the first report of MWMV in Greece. References: (1) H. Lecoq et al. Plant Dis. 85:547, 2001. (2) H. Lecoq et al. New Dis. Rep. 16:19, 2007. (3) A. T. Owolabi et al. Int. J. Virol. 8:258, 2012. (4) S. Yakoubi et al. Arch. Virol. 153:775, 2008.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1366-1371 ◽  
Author(s):  
Richard C. Larsen ◽  
Walter J. Kaiser ◽  
Stephen D. Wyatt ◽  
Keri L. Buxton-Druffel ◽  
Phillip H. Berger

During the 1999 to 2001 growing seasons, symptoms consisting of mosaic, stunting, yellowing, wilting, shortening of internodes, and phloem discoloration were observed in chickpea (Cicer arietinum) grown in the Department of Chuquisaca in southern Bolivia. In some fields, approximately 10% of the plants exhibited viruslike symptoms and suffered greatly reduced seed yields. Lentil (Lens culinaris) was also observed to be infected but not pea (Pisum sativum) or faba bean (Vicia faba) growing in nearby fields. Infected chickpea tissue reacted positively to the potyvirus group-specific monoclonal antibody (MAb), but there was no serological reaction with antisera to the potyviruses Bean yellow mosaic virus, Clover yellow vein virus, Cowpea aphid-borne mosaic virus, Pea seedborne mosaic virus, Bean common mosaic virus, or Bean common mosaic necrosis virus. Western blots of total protein extracts probed with the potyvirus MAb revealed a single band ca. 32 kDa. Comparative sequence analysis of cDNA clones generated from the putative coat protein gene consisted of 282 amino acids (31.9 kDa) and showed moderate identities of 67, 66, 63, 63, and 61% with the coat proteins of potyviruses Pepper severe mosaic virus, Pepper yellow mosaic virus, Potato virus Y, Plum pox virus, and Pepper mottle virus, respectively. Phylogenetic analysis of the coat protein amino acid sequence revealed that this virus is a unique member of the family Potyviridae and is phylogenetically most closely related to a group of Solanaceae-infecting potyviruses rather than to other legumeinfecting potyviruses. The proposed name for the new causal agent is Chickpea yellow mosaic virus.


2020 ◽  
Vol 102 (3) ◽  
pp. 923-924
Author(s):  
Lidiya Mishchenko ◽  
Alina Dunich ◽  
Andrei Smertenko ◽  
Anna Dashchenko ◽  
Roksolana Sovinska ◽  
...  

Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1557-1557 ◽  
Author(s):  
Y. N. Wang ◽  
M. J. Melzer ◽  
W. B. Borth ◽  
J. C. Green ◽  
I. Hamim ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 319-319 ◽  
Author(s):  
N. L. Robertson ◽  
C. J. Coyne

Lupine accessions from the Cool Season Food Legume Seed Collection are grown for seed regenerations in Pullman, WA by the Agricultural Research Service, Western Regional Plant Introduction Station. Selected seed was germinated in the greenhouse and assayed by indirect ELISA using antiserum for potyvirus group detection (Agdia, Inc., Elkhart, IN). Healthy transplants were grown for seed collection on outside plots. In July of 2005, more than 90% of 307 Lupinus luteus L. transplants developed severe yellowing, necrosis, and stunting with an estimated 5% plant death. Plants were heavily infested with aphids and leaf sap was serologically positive for potyvirus. Partially purified virus preparations from infected plants contained filamentous particles and a 35-kDa protein that reacted with universal potyvirus antiserum on western blots. Reverse transcription (RT)-PCR using potyvirus universal primers (2) and cDNA derived from virion RNA generated a ~1.7-kbp product that was cloned and sequenced. The sequenced portion of the genomic RNA contained 1,610 nucleotides (nt) on its 3′-terminus (GenBank Accession No. EU144223) that included a partial nuclear inclusion protein, NIb, (1 to 637 nt) with the conserved amino acid (aa) replicase motif GDD (131 to 139 nt), the coat protein (CP) gene of 821 nt (638 to 1,459 nt), and a 171-nt untranslated region (1,460 to 1,630 nt) attached to a poly(A)tail. The CP sequence contained a NAG motif instead of the DAG motif commonly associated with aphid transmission. Searches in the NCBI GenBank database revealed that the CP aa and nt sequences contained conserved domains with isolates of Bean yellow mosaic virus (BYMV). A pairwise alignment (ClustalX) (4) of the CP aa from 20 BYMV isolates with the BYMV-Pullman isolate revealed identities from 96% (BYMV-S, U47033) to 88% (BYMV-MI [X81124)] -MI-NAT [AF434661]). This meets the species demarcation criteria of more than ~80% identity for inclusion with BYMV (1). Virion mechanical inoculations resulted in local lesions on Chenopodium amaranticolor Coste et Reyn and C. quinoa Willd., necrotic blotches on Phaseolus vulgaris L., and yellow spots and systemic movement in L. succulentus Douglas ex. K. Koch, L. texensis ‘Bluebonnet’, and L. texensis ‘Maroon’; BYMV was confirmed by western blots and ELISA. The experimental inoculations represent the first documented report of BYMV in the annual L. succulentus and biennial L. texensis species. Since BYMV is seedborne and transmitted by many aphid species (3), it is possible that several lupine transplants escaped potyvirus detection, and secondary transmission of BYMV to plants occurred by aphids. During the 1950s, BYMV was confirmed in several annual lupines grown as crops in the southeastern United States (3). To our knowledge, this is the first report of BYMV occurring naturally in a lupine species in Washington. BYMV is a destructive virus to lupine species worldwide and has a wide host range in Fabaceae. This research directly contributes toward the maintenance of virus-free lupine seed for distribution to scientists focusing on lupine research. References: (1) P. H. Berger et al. Family Potyviridae. Page 819 in: Virus Taxonomy: Eighth Report of the ICTV. C. M. Fauquet et al. eds., 2005. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) R. A. C. Jones and G. D. Mclean, Ann. Appl. Biol. 114:609, 1989. (4) J. D. Thompson et al. Nucleic Acids Res. 24:4878, 1997.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1124-1124 ◽  
Author(s):  
V. Trkulja ◽  
D. Kovačić ◽  
B. Ćurković ◽  
A. Vučurović, I. Stanković ◽  
A. Bulajić ◽  
...  

During July 2012, field-grown melon plants (Cucumis melo L.) with symptoms of mosaic, chlorotic mottling, and vein banding as well as blistering and leaf malformation were observed in one field in the locality of Kladari (municipality of Doboj, Bosnia and Herzegovina). Disease incidence was estimated at 60%. A total of 20 symptomatic plants were collected and tested with double-antibody sandwich (DAS)-ELISA using commercial polyclonal antisera (Bioreba AG, Reinach, Switzerland) against four the most commonly reported melon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV) (1,3). Commercial positive and negative controls were included in each assay. Only CMV was detected serologically in all screened melon samples. Sap from an ELISA-positive sample (162-12) was mechanically inoculated to test plants using 0.01 M phosphate buffer (pH 7.0). The virus caused necrotic local lesions on Chenopodium amaranticolor 5 days after inoculation, while mild to severe mosaic was observed on Nicotiana rustica, N. glutinosa, N. tabacum ‘Samsun,’ Cucurbita pepo ‘Ezra F1,’ and Cucumis melo ‘Ananas’ 10 to 14 days post-inoculation. All five inoculated plants of each experimental host were DAS-ELISA positive for CMV. The presence of CMV in all naturally and mechanically infected plants was further verified by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions and used as template in RT-PCR. RT-PCR was carried out with the One-Step RT-PCR Kit (Qiagen) using primer pair CMVCPfwd and CMVCPrev (4), amplifying the entire coat protein (CP) gene and part of 3′- and 5′-UTRs of CMV RNA 3. Total RNAs obtained from the Serbian CMV isolate from Cucurbita pepo ‘Olinka’ (GenBank Accession No. HM065510) and healthy melon leaves were used as positive and negative controls, respectively. An amplicon of the correct predicted size (871 bp) was obtained from all naturally and mechanically infected plants as well as from positive control, but not from healthy tissues. The amplified product derived from isolate 162-12 was purified with QIAquick PCR Purification Kit (Qiagen) and sequenced directly using the same primer pair as in RT-PCR (KC559757). Multiple sequence alignment of the 162-12 isolate CP sequence with those available in GenBank, conducted with MEGA5 software, revealed that melon isolate from Bosnia and Herzegovina showed the highest nucleotide identity of 99.7% (100% amino acid identity) with eight CMV isolates originating from various hosts from Serbia (GQ340670), Spain (AJ829770 and 76, AM183119), the United States (U20668, D10538), Australia (U22821), and France (X16386). Despite the fact that CMV is well established in majority of Mediterranean countries and represents an important threat for many agriculture crops, including pepper in Bosnia and Herzegovina (2), to our knowledge, this is the first report of CMV infecting melon in Bosnia and Herzegovina. Melon popularity as well as production value has been rising rapidly and the presence of CMV may have a drastic economic impact on production of this crop in Bosnia and Herzegovina. References: (1) E. E. Grafton-Cardwell et al. Plant Dis. 80:1092, 1996. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) M. Luis-Arteaga et al. Plant Dis. 82:979, 1998. (4) K. Milojević et al. Plant Dis. 96:1706, 2012.


Sign in / Sign up

Export Citation Format

Share Document