putative coat protein
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Camila Chabi-Jesus ◽  
Pedro L. Ramos-González ◽  
Matheus Postclam-Barro ◽  
Rafaela Salgado Fontenele ◽  
Ricardo Harakava ◽  
...  

Despite the importance of viral strains/variants as agents of emerging diseases, genetic and evolutionary processes affecting their ecology are not fully understood. To get insight into this topic, we assessed the population and spatial dynamic parameters of citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae). CiLV-C is the etiological agent of citrus leprosis disease, a non-systemic infection considered the main viral disorder affecting citrus orchards in Brazil. Overall, we obtained 18 complete or near-complete viral genomes, 123 complete nucleotide sequences of the open reading frame (ORF) encoding the putative coat protein, and 204 partial nucleotide sequences of the ORF encoding the movement protein, from 430 infected Citrus spp. samples collected between 1932 and 2020. A thorough examination of the collected dataset suggested that the CiLV-C population consists of the major lineages CRD and SJP, unevenly distributed, plus a third one called ASU identified in this work, which is represented by a single isolate found in an herbarium sample collected in Asuncion, Paraguay, in 1937. Viruses from the three lineages share about 85% nucleotide sequence identity and show signs of inter-clade recombination events. Members of the lineage CRD were identified both in commercial and non-commercial citrus orchards. However, those of the lineages SJP were exclusively detected in samples collected in the citrus belt of São Paulo and Minas Gerais, the leading Brazilian citrus production region, after 2015. The most recent common ancestor of viruses of the three lineages dates back to, at least, ∼1500 years ago. Since citrus plants were introduced in the Americas by the Portuguese around the 1520s, the Bayesian phylodynamic analysis suggested that the ancestors of the main CiLV-C lineages likely originated in contact with native vegetation of South America. The intensive expansion of CRD and SJP lineages in Brazil started probably linked to the beginning of the local citrus industry. The high prevalence of CiLV-C in the citrus belt of Brazil likely ensues from the intensive connectivity between orchards, which represents a potential risk toward pathogen saturation across the region.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nourolah Soltani ◽  
Deborah Anne Golino ◽  
Maher Al Rwahnih

Rose leaf rosette-associated virus (RLRaV) is a member of genus Closterovirus, family Closteroviridae. The virus was first discovered in China in 2015 from a mixed infected wild rose (Rosa multiflora Thunb.) showing small leaf rosettes on branches, dieback and severe decline symptoms (He et al. 2015). In 2013, a rose plant (cv. Roses Are Red) was introduced to Foundation Plant Services (FPS, UC-Davis) rose collection. The plant was originated from a private rose breeder collection located in California. In 2019, total nucleic acids (TNA) were isolated from leaf tissues of one asymptomatic plant (Roses Are Red plant) using MagMax Plant RNA Isolation Kit (Thermo Fisher Scientific, USA). Extracted TNA were screened by reverse-transcription quantitative PCR (RT-qPCR) for six common viruses infecting roses, including prunus necrotic ringspot virus (PNRSV), apple mosaic virus (ApMV), rose spring dwarf associated virus (RSDaV), rose yellow vein virus (RYVV), rose rosette virus (RRV), and blackberry chlorotic ringspot virus (BCRV); however, the results were negative. Therefore, the sample was subjected to high throughput sequencing (HTS). Briefly, TNA was depleted of rRNA and advanced for cDNA library preparation using TruSeq Stranded Total RNA kit (Illumina, USA). HTS was performed on Illumina NextSeq 500 platform. The raw reads were trimmed, de novo assembled, and subsequently were annotated using tBLASTx algorithm (Al Rwahnih et al. 2018). HTS generated 23.6 million 75 nucleotide (nt) single-end raw data reads. De novo assembly generated a contig (16,528 nts) resembling RLRaV reference sequence (KJ748003) with 74% identity at the nucleotide level. Putative coat protein and heat shock protein 70-like protein were identified based on >90% identity with RLRaV genes. To confirm HTS results, RT-PCR was performed using two primer sets, 1) Clo-F4916 (5’-GGTGTTCCAACGCTATCGTG-3’) and Clo-R5215 (5’- TGTCCTCAAACCGCCTACAT-3’) targeting nucleotide sequences of putative polyprotein 1a, and 2) Clo-F10006 (5’-GATTCCGCGGACGAATTAAT-3’) and Clo-R10311 (5’-GGTAACCGAAAGGTAAAGTATTC-3’) targeting nucleotide sequences of putative protein p25. The RLRaV amplicons with expected size of 300 nt were confirmed using bidirectional Sanger sequencing. The near-complete sequence of the new RLRaV isolate was deposited in GenBank under accession number MW056181. In addition, HTS analysis showed that RLRaV was in mixed infection with two mycoviruses (rose cryptic virus with 8,267 mapped reads and rose partitivirus with 7,283 mapped readss). To our knowledge, this is the first report of RLRaV affecting roses in California. Further research is needed to determine the prevalence of RLRaV in California as well as evaluation of RLRaV effect on rose performance.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 759 ◽  
Author(s):  
Azhar ◽  
Mu ◽  
Huang ◽  
Cheng ◽  
Fu ◽  
...  

Infection by diverse mycoviruses is a common phenomenon in Sclerotinia sclerotiorum. In this study, the full genome of a single-stranded RNA mycovirus, tentatively named Hubei sclerotinia RNA virus 1 (HuSRV1), was determined in the hypovirulent strain 277 of S. sclerotiorum. The HuSRV1 genome is 4492 nucleotides (nt) long and lacks a poly (A) tail at the 3ˊ- terminus. Sequence analyses showed that the HuSRV1 genome contains four putative open reading frames (ORFs). ORF1a was presumed to encode a protein with a conserved protease domain and a transmembrane domain. This protein is 27% identical to the P2a protein encoded by the subterranean clover mottle virus. ORF1b encodes a protein containing a conserved RNA-dependent RNA polymerase (RdRp) domain, which may be translated into a fusion protein by a -1 ribosome frameshift. This protein is 45.9% identical to P2b encoded by the sowbane mosaic virus. ORF2 was found to encode a putative coat protein, which shares 23% identical to the coat protein encoded by the olive mild mosaic virus. ORF3 was presumed to encode a putative protein with an unknown function. Evolutionary relation analyses indicated that HuSRV1 is related to members within Sobemovirus, but forms a unique phylogenetic branch, suggesting that HuSRV1 represents a new member within Solemoviridae. HuSRV1 virions, approximately 30 nm in diameter, were purified from strain 277. The purified virions were successfully introduced into virulent strain Ep-1PNA367, resulting in a new hypovirulent strain, which confirmed that HuSRV1 confers hypovirulence on S. sclerotiorum.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 167 ◽  
Author(s):  
Gonçalo Silva ◽  
Moritz Bömer ◽  
Ajith I. Rathnayake ◽  
Steven O. Sewe ◽  
Paul Visendi ◽  
...  

To date, several viruses of different genera have been reported to infect yam (Dioscorea spp.). The full diversity of viruses infecting yam, however, remains to be explored. High-throughput sequencing (HTS) methods are increasingly being used in the discovery of new plant viral genomes. In this study, we employed HTS on yam to determine whether any undiscovered viruses were present that would restrict the international distribution of yam germplasm. We discovered a new virus sequence present in 31 yam samples tested and have tentatively named this virus “yam virus Y” (YVY). Twenty-three of the samples in which YVY was detected showed mosaic and chlorotic leaf symptoms, but Yam mosaic virus was also detected in these samples. Complete genome sequences of two YVY viral isolates were assembled and found to contain five open reading frames (ORFs). ORF1 encodes a large replication-associated protein, ORF2, ORF3 and ORF4 constitute the putative triple gene block proteins, and ORF5 encodes a putative coat protein. Considering the species demarcation criteria of the family Betaflexiviridae, YVY should be considered as a novel virus species in the family Betaflexiviridae. Further work is needed to understand the association of this new virus with any symptoms and yield loss and its implication on virus-free seed yam production.


2017 ◽  
Author(s):  
Humberto Debat ◽  
Zinan Luo ◽  
Brian J. Iaffaldano ◽  
Xiaofeng Zhuang ◽  
Katrina Cornish

AbstractThe Amalgaviridae family comprise persistent viruses that share the genome architecture of Totiviridae and gene evolutionary resemblance to Partitiviridae. Two genera have been assigned to this family, including genus Amalgavirus consisting in nine recognized species, corresponding to plant infecting viruses with dsRNA monosegmented genomes of ca. 3.4 kb. Here, we present the molecular characterization of two novel viruses detected in rubber dandelion (Taraxacum kok-saghyz). The sequenced viruses are 3,409 and 3,413 nt long, including two partially overlapping ORFs encoding a putative coat protein and an RNA-dependent RNA polymerase (RdRP). Phylogenetic insights based on the RdRP suggest them to be members of two new species within the Amalgavirus genus. Multiple independent RNAseq data suggest that the identified viruses have a dynamic distribution and low relative RNA levels in infected plants. Virus presence was not associated with any apparent symptoms on the plant hosts. We propose the names rubber dandelion latent virus 1 & 2 to the detected amalgaviruses; the first viruses to be associated to this emergent and sustainable natural rubber crop.


2013 ◽  
Vol 193 (2) ◽  
pp. 548-553 ◽  
Author(s):  
Nandlal Choudhary ◽  
Avijit Roy ◽  
Leon M. Guillermo ◽  
D.D. Picton ◽  
G. Wei ◽  
...  

2013 ◽  
Vol 38 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Renata F. Calegario ◽  
Eliane C. Locali ◽  
Dagmar R. Stach-Machado ◽  
Luís Antônio Peroni ◽  
Raquel Caserta ◽  
...  

2013 ◽  
Vol 103 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Avijit Roy ◽  
Nandlal Choudhary ◽  
Leon M. Guillermo ◽  
Jonathan Shao ◽  
Ananthakrishnan Govindarajulu ◽  
...  

Citrus leprosis in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction (RT-PCR)-based diagnostic methods failed to identify CiLV-C from citrus samples with symptoms similar to citrus leprosis; however, virions similar to CiLV-C were observed in the cytoplasm of the symptomatic leaves by transmission electron microscopy. Furthermore, the causal organism was transmitted by the false spider mite, Brevipalpus phoenicis, to healthy citrus seedlings. A library of small RNAs was constructed from symptomatic leaves and used as the template for Illumina high-throughput parallel sequencing. The complete genome sequence and structure of a new bipartite RNA virus was determined. RNA1 (8,717 nucleotides [nt]) contained two open reading frames (ORFs). ORF1 encoded the replication module, consisting of five domains: namely, methyltransferase (MTR), cysteine protease-like, FtsJ-MTR, helicase (Hel), and RNA-dependent RNA polymerase (RdRp); whereas ORF2 encoded the putative coat protein. RNA2 (4,989 nt) contained five ORFs that encode the movement protein (MP) and four hypothetical proteins (p7, p15, p24, and p61). The structure of this virus genome resembled that of CiLV-C except that it contained a long 3′ untranslated terminal region and an extra ORF (p7) in RNA2. Both the RNA1 and RNA2 of the new virus had only 58 and 50% nucleotide identities, respectively, with known CiLV-C sequences and, thus, it appears to be a novel virus infecting citrus. Phylogenetic analyses of the MTR, Hel, RdRp, and MP domains also indicated that the new virus was closely related to CiLV-C. We suggest that the virus be called Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) and it should be unambiguously classified as a definitive member of the genus Cilevirus. A pair of CiLV-C2 genome-specific RT-PCR primers was designed and validated to detect its presence in citrus leprosis samples collected from the Casanare and Meta states in Colombia.


Sign in / Sign up

Export Citation Format

Share Document