scholarly journals First Report of Collar and Stem Rot Caused by Pythium aphanidermatum on Figmarigold (Lampranthus sp.) in Italy

Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 672-672 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
M. L. Gullino

Lampranthus sp. N.B. Brown (figmarigold) of the Aizoaceae family is used as groundcover in gardens. In October of 2008, severe outbreaks of a previously unknown rot were observed in a nursery located in Liguria, near Savona (northern Italy), on 35-day-old rooted cuttings grown in a peat substrate. Approximately 50% of rooted cuttings of red-flowered cultivars were affected. Lesions on collars and young stems were brown, water soaked, and soft. Plants eventually collapsed as roots rotted. Thin, aerial hyphae were visible on the surface of the stems and substrate. Later, a thick, light yellow, mycelial mat surrounded infected plants. Tissue fragments were excised from the margins of the lesions, dipped in a solution containing 1% sodium hypochlorite, and plated on potato dextrose agar and a medium selective for Oomycetes (4). Plates were incubated under constant fluorescent light at 23 ± 1°C for 4 to 5 days. Hyphae of five isolates grown on V8 medium were aseptate and 4.2 to 7.9 (average 6.2) μm wide. Sporangia consisted of complexes of swollen hyphal branches. Oogonia were globose, smooth, and 23.5 to 28.0 (average 25.9) μm in diameter. Antheridia were barrel shaped, intercalary, and diclinous. Oospores were globose and 19.4 to 23.6 (average 21.4) μm in diameter. The internal transcribed spacer (ITS) region of rDNA of a single isolate (DB24112008) was amplified with primers ITS4/ITS6 and sequenced. A BLAST analysis (1) in GenBank of the 1,074-bp segment showed a 100% homology with the sequence of Pythium aphanidermatum (Accession No. EU245039). The nucleotide sequence has been assigned the GenBank Accession No. FJ492745. Pathogenicity tests were performed twice on a red-flower cultivar of a Lampranthus sp. grown in 1-liter pots containing a peat moss substrate infested with wheat and hemp kernels colonized with one isolate of P. aphanidermatum at a rate of 20 g/liter. Ten plants were grown in infested media and 10 plants were grown in noninfested media. Greenhouse temperatures were 18 to 24°C. The first symptoms of stem and root rot developed 15 days later, while control plants remained healthy. P. aphanidermatum was consistently reisolated from the lesions. To our knowledge, this is the first report of P. aphanidermatum on a Lampranthus sp. in Italy. The disease has been reported in Japan (3) in 2008, while in the United States, a Pythium sp. was reported on L. aureus and L. glomeratus (2). Currently, the economic importance of Pythium rot on figmarigold in Italy is still limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) H. Kawarazachi et al. J. Gen. Plant Pathol. 74:94, 2008. (4) H. Masago et al. Phytopathology, 67, 425, 1977.

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 969-969
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Platycodon grandiflorum (balloon flower), a perennial plant belonging to the Campanulaceae family, is widely grown as a bedding plant in temperate gardens. This species is characterized by the ability to bloom profusely throughout the summer into early fall and for its white to blue and pink flowers. In September 2008, symptoms of a previously unknown blight were observed in six gardens located in the Biella Province of northern Italy. When the disease developed, temperatures ranged between 15 and 22°C with frequent rains (149.8 mm of rainfall registered in September 2008 by the meteorological station of Oropa, located in the same area in which the disease appeared). Initially, leaves and petioles appeared chlorotic. Subsequently, lesions developed on the stems and flowers were sometimes affected. In each garden examined, approximately 50% of the plants were affected by the disease. A soft, gray mycelium was observed on symptomatic tissues, especially the stems. Severely infected leaves and stems eventually became completely rotted and later desiccated. Diseased tissue was excised from affected leaves, immersed in a solution containing 1% sodium hypochlorite for 10 s, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced abundant mycelium on PDA medium when incubated under constant fluorescent light at 22 ± 1°C. Numerous sclerotia were produced on PDA plates incubated for 20 days at 8 ± 1°C. Sclerotia were dark, irregular, and measured 1 to 3.5 × 0.9 to 2.5 (average 2.1 × 1.5) mm. Conidia were smooth, ash colored, unicellular, ovoid, and measured 11 to 19 × 7 to 13 (average 15 × 11) μm. These morphological features were typical of those described for Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 539-bp segment showed 100% similarity with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned the GenBank Accession No. GQ149480. Pathogenicity tests were performed by placing 1-cm2 fragments removed from PDA cultures of B. cinerea isolated from balloon flower on leaves of healthy potted P. grandiflorum plants (4-month-old). Five fragments were placed on each plant. Plants inoculated with PDA alone served as controls. Ten plants per treatment were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a greenhouse at temperatures between 18 and 23°C. The first foliar lesions developed on leaves 3 days after inoculation, and after 5 days, 80% of the leaves were severely infected. As the infection progressed after the inoculation, the stems also became infected. Control plants remained healthy. B. cinerea was consistently reisolated from leaf and stem lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of B. cinerea on P. grandiflorum in Italy, as well as in Europe. Blight on balloon flower attributed to Botrytis spp. was previously reported in the United States (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 614-614
Author(s):  
T. D. Miles ◽  
C. I. Woelk ◽  
A. Rojas ◽  
A. M. C. Schilder

In September 2009, ~40 declining blueberry plants (Vaccinium corymbosum L. ‘Jersey’) were observed in a poorly drained area of a 30-year-old field near Fennville, MI. The stunted bushes had yellow leaves and defoliation; others were completely dead. The grower reported that the bushes had been declining over several years. Root samples tested positive in a Phytophthora ELISA test (Agdia Inc., Elkhart IN). Twenty root pieces (2 cm long and 2 to 3 mm in diameter) were surface disinfested and plated on Rye A agar; five yielded fungal-like colonies that were subcultured on potato dextrose agar (PDA). One isolate was white and grew slowly (3 to 4 mm/day at 22 to 24°C). Three isolates were white and grew faster (10 to 12 mm/day at 22 to 24°C) in a chrysanthemal pattern. The fifth was a Fusarium sp. DNA of the white colonies was extracted and the internal transcribed spacer (ITS) region was sequenced using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers. The slow-growing morphotype had 99% identity to Phytophthora sp. isolate 92-209C (Accession No. EU106591) in GenBank but failed to induce symptoms in multiple inoculation tests. The fast-growing morphotype (Accession No. HQ398249) had 98% identity to Pythium sterilum UASWS0265 from declining alder stands in Poland (Accession No. DQ525089). Sequencing of the COXII gene using the FM66/FM58 primer set (3) yielded a product (Accession No. HQ721468) with 100% identity to P. sterilum GD32a from forest soil in Poland (Accession No. EF421185). Hyphae were hyaline, coenocytic, and 4 to 7 μm wide with some swellings at the tips (7 to 9 μm wide). No sporangia, oogonia, or antheridia were observed. Mycelium tested positive in the ELISA test described above. According to Agdia Inc., 10 of 19 tested Pythium spp. have shown similar cross reactivity. Pythium spp. are known to cause root rot of blueberries in Oregon (2). In British Columbia, P. sterilum was commonly isolated from roots of declining blueberry bushes (4). P. sterilum Belbahri & Lefort only reproduces asexually (1). Our isolate was similar but did not produce sporangia in water or on PDA, V8 juice agar, Rye A agar, or water agar. Roots of 10 2-month-old ‘Bluecrop’ cuttings were placed in an aqueous suspension of rinsed mycelium (0.1 g/ml) from 21-day-old cultures grown in V8 broth or in sterile deionized water (control). After 1 h, plants were potted in peat moss/perlite (2:1) or autoclaved sand (five each) and placed in a glasshouse at 25°C. After 7 days, inoculated plants in both soil types had wilted or collapsed with significant necrosis on the roots and primary shoot. Control plants showed no symptoms. In a similar experiment with 6-month-old plants in sand, symptoms appeared after 10 to 12 days. The pathogen was recovered from surface-disinfested root and stem sections of all inoculated plants but not control plants and its identity was confirmed by sequencing of the ITS region. To our knowledge, this is the first report of P. sterilum on blueberries in the United States. While this disease appears to be uncommon in Michigan, it is a potential cause of plant decline, the diagnosis of which may be complicated by cross reactivity in ELISA testing. References: (1) L. Belbahri et al. FEMS Microbiol. Lett. 255:209, 2006. (2) D. R. Bryla and R. G. Linderman. HortScience 43:260, 2008. (3) F. N. Martin. Mycologia 92:711, 2000. (4) S. Sabaratnam. BC Plant Health Fund Final Report. B.C. Retrieved from http://www.agf.gov.bc.ca/cropprot/phf_final_report.pdf , 2008.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 292-292 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
G. Ortu ◽  
M. L. Gullino

During July 2010, symptoms of crown and root rot were observed on leaf beet (Beta vulgaris L. subsp. vulgaris) grown in a commercial field near Torino (northern Italy). The first symptoms developed 25 days after sowing with temperatures ranging from 25 to 30°C, and 20% of plants were affected. Affected plants were stunted and leaves showed chlorosis and suddenly wilted. The collar and young stems were affected first and appeared brown, water-soaked, and were characterized by a soft rot. Eventually, all affected plants collapsed. Thin aerial mycelia were visible on the surface of the infected plants if maintained at a high relative humidity. Tissue fragments of 1 mm2 were excised from the margins of the lesions, dipped in a solution containing 1% sodium hypochlorite, and plated on potato dextrose agar (PDA) and on a medium selective for oomycetes (2). Plates were incubated under constant fluorescent light at 22 ± 1°C for 5 days. Five isolates, grown on V8 medium (vegetable mix 300 g; agar 15 g; CaCO3 1.5 g; distilled water 1 liter) and observed under light microscope showed the morphological characters of Pythium aphanidermatum (3). This result was confirmed by PCR and sequence analysis. The internal transcribed spacer (ITS) region of rDNA of a single isolate (Py 7/10) was amplified using the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 815 bp segment showed a 99% homology with the sequence of P. aphanidermatum (GenBank Accession JN695786). The nucleotide sequence has been assigned to the GenBank Accession JX462954. Pathogenicity tests were performed twice on B. vulgaris subsp. vulgaris grown in 2-liter pots, containing a steam disinfested organic peat substrate (70% black peat, 30% white peat, pH 5.5 to 6, N 110 to 190 mg L–1, P2O5 140 to 230 mg L–1, K2O 170 to 280 mg L–1), infested with wheat and hemp kernels colonized with a strain of P. aphanidermatum at a rate of 1 g L–1. Ten seeds per pot were sown in four pots filled with the infested medium, while the same number of seeds were sown in non-infested substrate. Plants were kept in two growth chambers, at 20 and 27°C. The first symptoms developed 7 days after the artificial inoculation. After 20 days, 70% of plants were infected at 27°C, while 10% were affected at 20°C. Control plants remained healthy at both temperatures. P. aphanidermatum was consistently reisolated from the lesions. To our knowledge, this is the first report of damping off of B. vulgaris subsp. vulgaris caused by P. aphanidermatum in Italy. The importance of the disease, at present limited, could increase in areas where leaf beet is intensively grown. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) H. Masago et al. Phytopathology 67:425, 1977. (3) T. Watanabe. Pictorial Atlas of Soil and Seed Fungi. CRC Press, Florida, 2002.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1038 ◽  
Author(s):  
J. Beckerman ◽  
H. Nisonson ◽  
N. Albright ◽  
T. Creswell

Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Penstemon barbatus (Cav.) Roth (synonym Chelone barbata), used in parks and gardens and sometimes grown in pots, is a plant belonging to the Scrophulariaceae family. During the summers of 2004 and 2005, symptoms of a root rot were observed in some private gardens located in Biella Province (northern Italy). The first symptoms resulted in stunting, leaf discoloration followed by wilt, root and crown rot, and eventually, plant death. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on a semiselective medium for Oomycetes (4). The microorganism consistently isolated from infected tissues, grown on V8 agar at 22°C, produced hyphae with a diameter ranging from 4.7 to 5.2 μm. Sporangia were papillate, hyaline, measuring 43.3 to 54.4 × 26.7 to 27.7 μm (average 47.8 × 27.4 μm). The papilla measured from 8.8 to 10.9 μm. These characteristics were indicative of a Phytophthora species. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 800 bp obtained showed a 100% homology with Phytophthora citrophthora (R. & E. Sm.) Leonian. The nucleotide sequence has been assigned GenBank Accession No. DQ384611. For pathogenicity tests, the inoculum of P. citrophthora was prepared by growing the pathogen on autoclaved wheat and hemp kernels (2:1) at 25°C for 20 days. Healthy plants of P. barbatus cv. Nano Rondo, 6 months old, were grown in 3-liter pots (one plant per pot) using a steam disinfested substrate (peat/pomix/pine bark/clay 5:2:2:1) in which 200 g of kernels per liter of substrate were mixed. Noninoculated plants served as control treatments. Three replicates were used. Plants were maintained at 15 to 20°C in a glasshouse. The first symptoms, similar to those observed in the gardens, developed 21 days after inoculation, and P. citrophthora was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice with similar results. A nonspecified root and crown rot of Penstemon spp. has been reported in the United States. (2). To our knowledge, this is the first report of P. citrophthora on P. barbatus in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) F. E. Brooks and D. M. Ferrin. Plant Dis. 79:212, 1995. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
R. Nicoletti ◽  
M. L. Gullino

Lantana camara is increasingly grown in northern Italy as a potted plant and contributes to the diversification of offerings in the ornamental market. During the spring of 2001, selections of L. camara cuttings growing at a commercial farm located at Albenga (Riviera coast) exhibited tan leaf spots of irregular size and shape. Spots were at first isolated, 4 to 8 mm in diameter, and later coalesced and affected the entire plant. Heavily infected leaves, stems, and branches became blighted and were killed. Infected rooted cuttings also eventually died. Diseased cuttings showed a progressive reduction (to less than 20%) in rooting ability. Isolations from infected leaves and stems on potato dextrose agar (PDA), supplemented with 100 mg/liter of streptomycin sulphate, consistently yielded a fungus with mycelial and cultural characteristics resembling Rhizoctonia solani. The fungal isolates were further characterized as R. solani Kühn AG-4 based on hyphal anastomoses with several AG-4 tester isolates. Pathogenicity tests were performed by placing 5-day-old-fungal mycelial plugs, grown on PDA, at the base of five healthy yellow-sage stems and holding plants in a dew chamber at 18 to 22°C. After 2 days, foliage blight appeared on leaves of inoculated plants, and after 3 days, stems also became infected and entire plants wilted. Five noninoculated plants remained healthy. The fungal pathogen was reisolated from all inoculated plants. R. solani has been observed on L. camara in the United States (1) and the Philippines (2). To our knowledge, this is the first report of R. solani on L. camara in Europe. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) F. T. Orillo and R. B. Valdez. Philipp. Agric. A. 42:292, 1958.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1438-1438 ◽  
Author(s):  
K. Chittem ◽  
S. M. Mansouripour ◽  
L. E. del Río Mendoza

North Dakota leads the United States in canola (Brassica napus L.) production (4). A canola field with a distinct patch of dead plants spreading over an area of approximately 0.4 ha was detected in Cavalier County, North Dakota, in early September 2013. Numerous spots within the patch had plant mortalities >80%. Dead plants pulled from the soil had roots with severe galling and clubbing. Clubbed roots were brittle and disintegrated easily when pressed between fingers. Root and soil samples collected at several locations within and outside the affected patch were pooled in separate groups. All plants collected in the patch were symptomatic but those collected outside were not. In the lab, total genomic DNA from three symptomatic and two healthy root samples was extracted using standard procedures and freehand slices were prepared for observation with a compound microscope. Also, DNA from pooled soil samples was extracted using FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH). Round resting structures ranging from 2.2 to 4.2 μm in diameter were observed by microscopic examination of symptomatic root tissues. These structures resembled those typically produced by Plasmodiophora brassicae Woronin. This initial identification was later confirmed through PCR analysis using the species specific primers TC1F/R and TC2F/R (1). PCR products of 548 bp (TC1F/R) and 519 bp (TC2F/R) were produced in the three symptomatic and two infested soil samples, confirming the presence of P. brassicae. PCR amplicons were not detected in healthy root and soil samples. Pathogenicity tests were conducted in greenhouse to fulfill Koch's postulates. Briefly, five square plastic pots (10 × 10 × 13 cm) were filled with a 10-cm layer of Sunshine Mix #1 potting mix (Fison Horticulture, Vancouver, BC, Canada) and then 1 g of ground root galls (approximately 5 × 105 resting spores) was spread evenly on its surface and covered with 2 cm of soilless mix. A similar number of pots were filled only with soilless mix and used as controls. All pots were planted with two seeds of canola cv. Westar and incubated in greenhouse conditions at 21°C and 16 h light daily. The experiment was conducted twice. Four weeks after planting, all plants in the inoculated pots had developed galls while plants in control pots were symptomless. Presence of P. brassicae resting spores in the newly developed galls was confirmed by microscopic observations and PCR. Based on the symptoms, morphology of resting spores, PCR reactions, and pathogenicity tests, we confirm the presence of P. brassicae on canola. While P. brassicae has been reported as widespread in North America (2), to our knowledge, this is the first report of clubroot on canola in North Dakota and the United States. Clubroot became the most important disease affecting canola production in central Alberta, Canada, within 5 years of its discovery in 2003 (3); since then, the disease has been detected in Saskatchewan and Manitoba (3), Canadian provinces that share borders with North Dakota. Considering the difficulties in management of clubroot, measures should be initiated to limit the spread of the disease before it could pose a threat to United States canola production. References: (1) T. Cao et al. Plant Dis. 91:80, 2007. (2) G. Dixon J. Plant Growth Regul. 28:194, 2009. (3) S. Strelkov and S. Hwang. Can. J. Plant Pathol. 36(S1):27, 2014. (4) USDA-NASS, Ag. Statistics No. 81, 2012.


Sign in / Sign up

Export Citation Format

Share Document