scholarly journals First Report of Colletotrichum scovillei Causing Anthracnose Fruit Rot on Pepper in South Carolina, United States

Plant Disease ◽  
2020 ◽  
Author(s):  
Sean M Toporek ◽  
Anthony P. Keinath

Anthracnose fruit rot caused by various Colletotrichum spp. is a serious disease for pepper (Capsicum annuum) growers, resulting in extensive fruit loss (Harp et al. 2008). Samples of five pepper fruits were obtained from two commercial farms in Lexington and Pickens counties, South Carolina, in August and September 2019, respectively. All fruits had two or more soft, sunken lesions covered with salmon-colored spore masses. Pieces of diseased tissue cut from the margins of lesions were surface disinfested in 0.6% sodium hypochlorite, rinsed in sterile deionized water, blotted dry, and placed on one-quarter-strength potato dextrose agar (PDA/4) amended with 100 mg chloramphenicol, 100 mg streptomycin sulfate, and 60.5 mg mefenoxam (0.25 ml Ridomil Gold EC) per liter. Two isolates of Colletotrichum sp. per fruit were preserved on dried filter paper and stored at 10º C. One additional isolate of Colletotrichum sp. had been collected from a jalapeño pepper fruit on a farm in Charleston County, South Carolina, in 1997. Colony morphology of three isolates, one per county, on Spezieller Nährstoffarmer Agar (SNA) was pale grey with a faint orange tint. All isolates readily produced conidia on SNA with an average length of 16.4 μm (std. dev. = 1.8 μm) and a width of 2.2 μm (std. dev. = 0.2 μm). Conidia were hyaline, smooth, straight, aseptate, cylindrical to fusiform with one or both ends slightly acute or round, matching the description of C. scovillei (Damm et al. 2012). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin (TUB2) genes from three isolates were amplified and sequenced with the primer pairs GDF1/GDR1 and T1/Bt2b, respectively. Species within the C. acutatum clade can be readily distinguished with GAPDH or TUB2 (Cannon et al. 2012). The GAPDH and TUB2 sequences for all three isolates were 100% similar to each other and strain CBS 126529 (GAPDH accession number JQ948597; TUB2 accession number JQ949918) of C. scovillei (Damm et al. 2012). GAPDH and TUB2 sequences for each isolate were deposited in GenBank under the accessions MT826948–MT826950 and MT826951-MT826953, respectively. A pathogenicity test was conducted on jalapeño pepper fruits by placing a 10-ul droplet of a 5 x 105 conidial suspension of each isolate onto a wound made with a sterile toothpick. Control peppers were mock inoculated with 10 ul sterile distilled water. A humid chamber was prepared by placing moist paper towels on the bottom of a sealed crisper box. Inoculated peppers were placed on upside-down 60 ml plastic condiment cups. Three replicate boxes each containing all four treatments were prepared. The experiment was repeated once. After 7 days in the humid chamber at 26ºC, disease did not develop on control fruits, whereas soft, sunken lesions covered with salmon-colored spores developed on inoculated fruits. Lesions were measured and C. scovillei was re-isolated onto amended PDA/4 as previously described. Lesion length averaged 15.6 mm (std dev. = 4.1 mm) by 11.5 mm (std dev. = 2.0 mm). Colletotrichum sp. resembling the original isolate were recovered from all inoculated fruit, but not from non-inoculated fruit. C. scovillei has been reported in Brazil in South America and in China, Indonesia, Japan, Malaysia, South Korea, Taiwan, and Thailand in Asia (Farr and Rossman 2020). This is the first report of C. scovillei as the casual organism of anthracnose fruit rot on pepper in South Carolina and the United States.

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1010-1010 ◽  
Author(s):  
D. Fernández-Ortuño ◽  
P. K. Bryson ◽  
G. Schnabel

Pilidium concavum (Desm.) Höhn. [synanamorph: Hainesia lythri (Desm.) Höhn.] is an opportunistic pathogen that causes leaf spots and stem necrosis in a wide range of hosts, including strawberry (Fragaria ananassa) (1,2). In October 2013, 24 strawberry plug plants (cv. Chandler) with brown to dark brown necrotic lesions on stolons were obtained from a nursery in Easley, SC. The lesions were oval shaped and varied in length from 2 to 8 mm. The tips of stolons with larger spots had died. To isolate the causal agent, 3 to 5 cm of necrotic stolon tissue was surface disinfected for 1 min with 10% bleach, rinsed with sterile distilled water, air dried, and placed on potato dextrose agar (PDA). After 7 days of incubation at 22°C, pink-orange masses of spores emerged. Single spore colonies on PDA produced a gray to brown colony with whitish aerial mycelium. Numerous discoid to hemisphaerical conidiomata (0.3 to 2.2 mm in diameter) developed with a dark base and exuded a pink, slimy mass that contained many conidia. Conidiophores (10.2 to 47.8 × 0.8 to 2.0 μm) were hyaline, unicellular, cylindrical, and filiform. Conidia (3.0 to 8.5 × 1.0 to 2.9 μm) were aseptate, fusiform, hyaline, and canoe-shaped to allantoid. On the basis of morphology, the pathogen was identified as P. concavum (3). The internal transcribed spacer region ITS1-5.8S-ITS2 was amplified by PCR and sequenced with primers ITS1 and ITS4 (4). The sequence was submitted to GenBank (Accession No. KF911079) and showed 100% homology with sequences of P. concavum. Pathogenicity was examined on strawberry fruit and leaves. Our previous efforts to achieve infection without wounding failed, which is consistent with experiences of other scientists (not cited). Thus, 24 strawberry fruit were wounded (1 cm deep) with a needle once, and submerged for 3 min in a conidial suspension (2 × 106 conidia ml−1). Controls were wounded and submerged in sterile water. After 4 days of incubation at 22°C, characteristic symptoms were observed at the wound site only on inoculated fruit. Detached leaves (about 6 cm in diameter) from 3- to 4-week-old strawberry plants cv. Chandler were surface sterilized and placed right side up in petri dishes (one leaf per dish) containing water agar. Leaves were inoculated at one site with a 50 μl conidial suspension (2 × 106 conidia ml−1) after inflicting a scraping-type injury with a needle to the surface at the point of inoculation. Control leaves received just water. After 7 days of incubation at 22°C, only the inoculated leaves showed symptoms similar to those observed on strawberry stolons. The fungus was re-isolated from symptomatic fruit and leaf lesions and identity was confirmed based on morphological features. The experiments were repeated. To our knowledge, this is the first report of P. concavum causing tan-brown rot on strawberry tissue in South Carolina. Prior to this study, the pathogen has been described from different hosts and countries including Belgium, Brazil, China, France, Iran, Poland, and the United States. Contamination of strawberry nursery stock by P. concavum could become a plant health management issue in the United States, especially if the pathogen is transferred to strawberry production areas. Further information on in-field occurrence of P. concacum is needed. References: (1) J. Debode et al. Plant Dis. 95:1029, 2011. (2) W. L. Gen et al. Plant Dis. 96:1377, 2012. (3) A. Y. Rossman et al. Mycol. Prog. 3:275, 2004. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 877-877
Author(s):  
A. Garibaldi ◽  
P. Pensa ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

During the summer of 2010, 20% of 7,000 4-month-old plants of apple cactus (Cereus peruvianus monstruosus) showed symptoms of a basal stem rot in a commercial nursery located in Liguria (northern Italy). Affected plants showed yellow orange-to-pale brown color from the crown level to the stem apex and a water-soaked rot was observed on the stem starting from the base. Brown discoloration was observed in the vascular system. Eventually stems bent, plants collapsed and died, and affected tissues dried out. A Fusarium sp. was consistently and readily isolated from symptomatic tissue on Komada selective medium. Isolates were purified and subcultured on potato dextrose agar (PDA). Single-spore cultures on PDA, Spezieller Nährstoffarmer agar (SNA) (3), and carnation leaf-piece agar (CLA) (2) were incubated at 26 ± 1°C (12-h fluorescent light, 12-h dark). On PDA, cultures produced a thick growth of white-to-pink mycelium and pale pink pigments in the agar. On SNA, cultures produced short monophialides with unicellular, ovoid-elliptical microconidia measuring 4.3 to 8.2 × 2.3 to 3.8 (average 6.0 × 2.8) μm. Chlamydospores were abundant, single or paired, terminal and intercalary, rough walled, and 6 to 8 μm in diameter. On CLA, cultures produced orange sporodochia with macroconidia that were 3 to 4 septate, nearly straight with a foot-shaped basal cell and a short apical cell, and measured 31.1 to 51.5 × 4.4 to 3.5 (average 43.2 × 3.8) μm. Such characteristics are typical of Fusarium oxysporum (3). Amplification of the ITS (internal transcribed spacer) of the rDNA using primers ITS1/ITS4 (4) yielded a 498-bp band. Sequencing and BLASTn analysis of this band showed an E-value of 0.0 with F. oxysporum. The nucleotide sequence has been assigned GenBank Accession No. JF422071. To confirm pathogenicity, five 6-month-old healthy plants of C. peruvianus monstruosus were inoculated by dipping roots in a conidial suspension (2.4 × 106 CFU/ml) of F. oxysporum isolated from affected plants. Inoculum was obtained from pure cultures of three single-spore isolates grown for 10 days on casein hydrolysate liquid medium. Roots were not wounded before the inoculation. Plants were transplanted into pots filled with steam-sterilized substrate (sphagnum peat/perlite/pine bark/clay 50:20:20:10). Five noninoculated plants served as a control. Plants were placed in a climatic chamber at 25 ± 1°C (12-h fluorescent light, 12 h-dark). Basal stem rot and vascular discoloration in the crown and stem developed within 30 days on each inoculated plant. Noninoculated plants remained healthy. F. oxysporum was consistently isolated from symptomatic plants. The pathogenicity test was conducted twice. F. oxysporum has been reported on Cereus spp. in the United States (1). To our knowledge, this is the first report of F. oxysporum on C. peruvianus monstruosus in Italy as well as in Europe. Currently, this disease is present in a few nurseries in Liguria. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (2) N. L. Fisher et al. Phytopathology 72:151, 1982. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell, Ames, IA, 2006. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 634-634 ◽  
Author(s):  
S. M. Williamson ◽  
T. B. Sutton

Persimmon trees are important for their fruit as well as their colorful fruit and foliage in the fall. Persimmon fruit (Japanese persimmon, Diospyros kaki cv. Fuyu) were collected in November 2008 from a tree in Windsor, NC, located in the Coastal Plain. Fruit were not symptomatic on the tree but developed dark lesions after harvest. Isolations from six fruit yielded seven isolates of Colletotrichum acutatum J. H. Simmonds. After incubation at 25°C under continuous light for 15 days on potato dextrose agar (PDA), all isolates had gray aerial mycelium, but the inverse sides of the plates of six isolates were maroon and one was beige. Masses of salmon-colored conidia were formed first in the center of the colonies, then were observed scattered across the colonies in older cultures. Conidia were hyaline, one-celled, elliptic with one or both ends pointed, and measured 8.1 to 16.3 × 3.1 to 5 μm. Setae and sclerotia were not observed. There were also dark structures measuring 1 to 10 mm that were partially embedded in the agar that contained conidia. Cultural and conidial characteristics of the isolates were similar to those of C. acutatum (3). PCR amplification was performed with the species-specific primer pair CaInt2/ITS4 (2) and genomic DNA from the original isolates and isolates obtained from inoculated fruit. An amplification product of approximately 490 bp, which is specific for C. acutatum, was observed. To fulfill Koch's postulates, persimmon fruit obtained from the grocery store were surface disinfested with 0.5% sodium hypochlorite and sterile filter paper disks dipped in conidial suspensions (1 × 105 conidia/ml) of two C. acutatum isolates (maroon and beige reverse) or sterile, deionized water were placed on the fruit. Three fruit were inoculated per treatment and the disks were placed on four locations on each fruit. Parafilm was wrapped around the diameter of the fruit to keep the filter paper disks moist and in place. Fruit were placed in moist chambers and incubated at 25°C. After 3 days, the Parafilm was removed and the fruit returned to the moist chambers. Small, dark lesions were observed on fruit inoculated with each isolate of C. acutatum when the filter paper disks were removed. Ten days after inoculation, dark lesions and acervuli with salmon-colored masses of conidia were observed on fruit inoculated with both isolates of C. acutatum and the fruit were soft. After 12 days, there were abundant masses of conidia and the inoculated areas were decayed. Control fruit remained firm and did not develop symptoms. Cultures obtained from the fruit and the conidia produced were typical of the isolates used to inoculate the fruit. C. acutatum has been reported to cause fruit rot on persimmon fruit in New Zealand (1). To our knowledge, this is the first report of C. acutatum on persimmon fruit in the United States. References: (1) R. Lardner et al. Mycol. Res. 103:275, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) B. C. Sutton. Page 523 in: Coelomycetes. Commonwealth Agricultural Bureaux, Great Britain. 1980.


2017 ◽  
Vol 18 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Chandrasekar (Shaker) S. Kousik ◽  
Pingsheng Ji ◽  
Daniel S. Egel ◽  
Lina M. Quesada-Ocampo

About 50% of the watermelons in the United States are produced in the southeastern states, where optimal conditions for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses before and after fruit harvest. Efficacy of fungicide rotation programs and Melcast-scheduled sprays for managing Phytophthora fruit rot was determined by conducting experiments in Phytophthora capsici-infested fields at three locations in southeastern United States (North Carolina, South Carolina, and Georgia). The mini seedless cultivar Wonder and seeded cultivar Mickey Lee (pollenizer) were used. Five weekly applications of fungicides were made at all locations. Significant fruit rot (53 to 91%, mean 68%) was observed in the nontreated control plots in all three years (2013 to 2015) and across locations. All fungicide rotation programs significantly reduced Phytophthora fruit rot compared with nontreated controls. Overall, the rotation of Zampro alternated with Orondis was highly effective across three locations and two years. Rotations of Actigard followed by Ranman+Ridomil Gold, Presidio, V-10208, and Orondis, or rotation of Revus alternated with Presidio were similarly effective. Use of Melcast, a melon disease-forecasting tool, may occasionally enable savings of one spray application without significantly impacting control. Although many fungicides are available for use in rotations, under very heavy rain and pathogen pressure, the fungicides alone may not offer adequate protection; therefore, an integrated approach should be used with other management options including well-drained fields.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1281-1281 ◽  
Author(s):  
S. Mahadevakumar ◽  
Vandana Yadav ◽  
G. S. Tejaswini ◽  
S. N. Sandeep ◽  
G. R. Janardhana

Lemon (Citrus lemon (L.) Burm. f.) is an important fruit crop cultivated worldwide, and is grown practically in every state in India (3). During a survey conducted in 2013, a few small trees in a lemon orchard near Mysore city (Karnataka) (12°19.629′ N, 76°31.892′ E) were found affected by dieback disease. Approximately 10 to 20% of trees were affected as young shoots and branches showed progressive death from the apical region downward. Different samples were collected and diagnosed via morphological methods. The fungus was consistently isolated from the infected branches when they were surface sanitized with 1.5% NaOCl and plated on potato dextrose agar (PDA). Plates were incubated at 26 ± 2°C for 7 days at 12/12 h alternating light and dark period. Fungal colonies were whitish with pale brown stripes having an uneven margin and pycnidia were fully embedded in the culture plate. No sexual state was observed. Pycnidia were globose, dark, 158 to 320 μm in diameter, and scattered throughout the mycelial growth. Both alpha and beta conidia were present within pycnidia. Alpha conidia were single celled (5.3 to 8.7 × 2.28 to 3.96 μm) (n = 50), bigittulate, hyaline, with one end blunt and other truncated. Beta conidia (24.8 to 29.49 × 0.9 to 1.4 μm) (n = 50) were single celled, filiform, with one end rounded and the other acute and curved. Based on the morphological and cultural features, the fungal pathogen was identified as Phomopsis citri H.S. Fawc. Pathogenicity test was conducted on nine healthy 2-year-old lemon plants via foliar application of a conidial suspension (3 × 106); plants were covered with polythene bags for 6 days and maintained in the greenhouse. Sterile distilled water inoculated plants (in triplicate) served as controls and were symptomless. Development of dieback symptoms was observed after 25 days post inoculation and the fungal pathogen was re-isolated from the inoculated lemon trees. The internal transcribed spacer region (ITS) of the isolated fungal genomic DNA was amplified using universal-primer pair ITS1/ITS4 and sequenced to confirm the species-level diagnosis (4). The sequence data of the 558-bp amplicon was deposited in GenBank (Accession No. KJ477016.1) and nBLAST search showed 99% homology with Diaporthe citri (teleomorph) strain 199.39 (KC343051.1). P. citri is known for its association with melanose disease of citrus in India, the United States, and abroad. P. citri also causes stem end rot of citrus, which leads to yield loss and reduction in fruit quality (1,2). Dieback disease is of serious concern for lemon growers as it affects the overall productivity level of the tree. To the best of our knowledge, this is the first report of P. citri causing dieback of lemon in India. References: (1) I. H. Fischer et al. Sci. Agric. (Piracicaba). 66:210, 2009. (2) S. N. Mondal et al. Plant Dis. 91:387, 2007. (3) S. P. Raychaudhuri. Proc. Int. Soc. Citriculture 1:461, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1187-1187
Author(s):  
J. J. Sadowsky ◽  
T. D. Miles ◽  
A. M. C. Schilder

Necrotic stems and leaves were observed on 2- to 4-month-old, rooted microshoot plants (Vaccinium corymbosum L. ‘Liberty’ and ‘Bluecrop’, V. angustifolium Aiton ‘Putte’, and V. corymbosum × V. angustifolium ‘Polaris’) in a Michigan greenhouse in 2008 and 2009. As the disease progressed, leaves fell off and 80 to 100% of the plants died in some cases. Root rot symptoms were also observed. A fungus was isolated from stem lesions. On potato dextrose agar (PDA), cultures first appeared light tan to orange, then rusty brown and zonate with irregular margins. Chains of orange-brown chlamydospores were abundant in the medium. Macroconidiophores were penicillately branched and had a stipe extension of 220 to 275 × 2.5 μm with a narrowly clavate vesicle, 3 to 4 μm wide at the tip. Conidia were hyaline and cylindrical with rounded ends, (1-)3-septate, 48 to 73 × 5 to 7 (average 60 × 5.5) μm and were held together in parallel clusters. Perithecia were globose to subglobose, yellow, 290 to 320 μm high, and 255 to 295 μm in diameter. Ascospores were hyaline, 2- to 3-septate, guttulate, fusoid with rounded ends, slightly curved, and 30 to 88 × 5 to 7.5 (average 57 × 5.3) μm. On the basis of morphology, the fungus was identified as Calonectria colhounii Peerally (anamorph Cylindrocladium colhounii Peerally) (1,2). The internal transcribed spacer region (ITS1 and ITS2) of the ribosomal DNA and the β-tubulin gene were sequenced (GenBank Accession Nos. HQ909028 and JF826867, respectively) and compared with existing sequences using BLASTn. The ITS sequence shared 99% maximum identity with that of Ca. colhounii CBS 293.79 (GQ280565) from Java, Indonesia, and the β-tubulin sequence shared 97% maximum identity with that of Ca. colhounii CBS 114036 (DQ190560) isolated from leaf spots on Rhododendron sp. in North Carolina. The isolate was submitted to the Centraalbureau voor Schimmelcultures in the Netherlands (CBS 129628). To confirm pathogenicity, 5 ml of a conidial suspension (1 × 105/ml) were applied as a foliar spray or soil drench to four healthy ‘Bluecrop’ plants each in 10-cm plastic pots. Two water-sprayed and two water-drenched plants served as controls. Plants were misted intermittently for 2 days after inoculation. After 7 days at 25 ± 3°C, drench-inoculated plants developed necrotic, sporulating stem lesions at the soil line, while spray-inoculated plants showed reddish brown leaf and stem lesions. At 28 days, three drench-inoculated and one spray-inoculated plant had died, while others showed stem necrosis and wilting. No symptoms were observed on control plants. Fungal colonies reisolated from surface-disinfested symptomatic stem, leaf, and root segments appeared identical to the original isolate. Cy. colhounii was reported to cause a leaf spot on blueberry plants in nurseries in China (3), while Ca. crotalariae (Loos) D.K. Bell & Sobers (= Ca. ilicicola Boedijn & Reitsma) causes stem and root rot of blueberries in North Carolina (4). To our knowledge, this is the first report of Ca. colhounii causing a disease of blueberry in Michigan or the United States. Because of its destructive potential, this pathogen may pose a significant threat in blueberry nurseries. References: (1) P. W. Crous. Taxonomy and Pathology of Cylindrocladium (Calonectria) and Allied Genera. The American Phytopathological Society, St. Paul, MN, 2002. (2) L. Lombard et al. Stud. Mycol. 66:31, 2010. (3) Y. S. Luan et al. Plant Dis. 90:1553, 2006. (4) R. D. Milholland. Phytopathology 64:831, 1974.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 690-690 ◽  
Author(s):  
L. P. Kou ◽  
V. L. Gaskins ◽  
Y. G. Luo ◽  
W. M. Jurick

Apples are grown and stored for 9 to 12 months under controlled atmosphere conditions in the United States. During storage, apples are susceptible to various fungal pathogens, including several Alternaria species (2). Alternaria tenuissima (Nees) Wiltshire causes dry core rot (DCR) on apples during storage and has recently occurred in South Africa (1). Losses range widely, but typically occur at 6 to 8% annually due to this disease (2). In February 2013, ‘Nittany’ apples with round, dark-colored, dry, spongy lesions were obtained from wooden bins in a commercial cold storage facility located in Pennsylvania. Symptomatic fruits were transported to the lab, rinsed with sterile water, and the lesions were sprayed with 70% ethanol until runoff and wiped dry. The skin was aseptically removed with a scalpel, and asymptomatic tissue was placed onto potato dextrose agar (PDA) and incubated at 25°C. Two single-spore isolates were propagated on PDA and permanent cultures were maintained as slants and stored at 4°C. The fungus produced a cottony white mycelium that turned olive-green to brown with abundant aerial hyphae and had a dark brown to black reverse on PDA. Isolates were identified as Alternaria based on conidial morphology as the spores were slightly melanized and obclavate to obpyriform catentulate with longitudinal and transverse septa attached in unbranched chains on simple short conidiophores. Conidia ranged from 10 to 70 μm long (mean 27.7 μm) and 5 to 15 μm wide (mean 5.25 μm) (n = 50) with 1 to 6 transverse and 0 to 2 longitudinal septa. Conidial beaks, when present, were short (5 μm or less) and tapered. Mycelial genomic DNA was extracted, and a portion of the histone gene (357 bp) was amplified via gene specific primers (Alt-His3-F/R) using conventional PCR (Jurick II, unpublished). The forward and reverse sequences were assembled into a consensus representing 2× coverage and MegaBLAST analysis showed that both isolates were 100% identical to Alternaria tenuissima isolates including CR27 (GenBank Accession No. AF404622.1) that caused DCR on apple fruit during storage in South Africa. Koch's postulates were conducted using 10 organic ‘Gala’ apple fruit that were surface sterilized with soap and water, sprayed with 70% ethanol, and wiped dry. The fruit were aseptically wounded with a nail to a 3 mm depth, inoculated with 50 μl of a conidial suspension (1 × 104 conidia/ml), and stored at 25°C in 80 count boxes on paper trays for 21 days. Mean lesion diameters on inoculated ‘Gala’ apple fruit were 19.1 mm (±7.4), water only controls (n = 10 fruit) were symptomless, and the experiment was repeated. Symptoms observed on artificially inoculated ‘Gala’ apple fruit were similar to the decay observed on ‘Nittany’ apples from cold storage. Based on our findings, it is possible that A. tenuissima can cause decay that originates from wounded tissue in addition to dry core rot, which has been reported (1). Since A. tenuissima produces potent mycotoxins, even low levels of the pathogen could pose a health problem for contaminated fruit destined for processing and may impact export to other countries. To the best of our knowledge, this is the first report of alternaria rot caused by A. tenuissima on apple fruit from cold storage in the United States. References: (1) J. C. Combrink et al. Decid. Fruit Grow. 34:88, 1984. (2) M. Serdani et al. Mycol. Res. 106:562, 2002. (3) E. E. Stinson et al. J. Agric. Food Chem. 28:960, 1980.


Sign in / Sign up

Export Citation Format

Share Document