scholarly journals Molecular Identification of Fungi Associated with Vascular Discoloration of Soybean in the North Central United States

Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 83-89 ◽  
Author(s):  
T. C. Harrington ◽  
J. Steimel ◽  
F. Workneh ◽  
X. B. Yang

Brown stem rot is a common but poorly understood vascular wilt disease of soybean. In order to more clearly delimit the causal agent (Phialophora gregata) and distinguish it from other morphologically similar fungi from discolored soybean stems, fungi were isolated on a semi-selective medium from discolored and non-discolored soybean stems collected at random across Iowa, Illinois, Minnesota, Missouri, and Ohio. A total of 11 fungi were commonly isolated and characterized based on colony morphology and DNA sequences of the internal transcribed spacer region of the rDNA operon. Phomopsis longicolla was the most frequently isolated fungus, but it was isolated more commonly from lightly discolored or non-discolored stems than from discolored stems. Phialophora gregata was the next most frequently isolated fungus and was isolated more commonly from discolored stems and more commonly in 1996 than in 1995, which had a warm growing season and relatively little brown stem rot. In inoculation experiments, only P. gregata was capable of causing the vascular discoloration and leaf symptoms typical of brown stem rot; none of the seven isolates could be considered non-defoliating. Two other fungi, Plectosphaerella cucumerina and Gliocladium roseum, were similar in colony morphology to Phialophora gregata but were not pathogenic to soybean, and these may be the same species as those referred to by earlier workers as Acremonium spp. or the non-defoliating form of P. gregata.

2003 ◽  
Vol 93 (7) ◽  
pp. 901-912 ◽  
Author(s):  
T. C. Harrington ◽  
J. Steimel ◽  
F. Workneh ◽  
X. B. Yang

Genetic variation and variation in aggressiveness in Phialophora gregata f. sp. sojae, the cause of brown stem rot of soybean, was characterized in a sample of 209 isolates from the north-central region. The isolates were collected from soybean plants without regard to symptoms from randomly selected soybean fields. Seven genotypes (A1, A2, A4, A5, A6, M1, and M2) were distinguished based on DNA fingerprinting with microsatellite probes (CAT)5 and (CAC)5, with only minor genetic variation within the A or M genotypes. Only the A1, A2, and M1 genotypes were represented by more than one isolate. The A genotypes dominated in the eastern Iowa, Illinois, and Ohio samples, whereas the M genotypes were dominant in samples from western Iowa, Minnesota, and Missouri. In growth chamber experiments, isolates segregated into two pathogenicity groups based on their aggressiveness toward soybean cvs. Kenwood and BSR101, which are relatively susceptible and resistant, respectively, to brown stem rot. In both root dip inoculation and inoculation by injecting spores into the stem near the ground line (stab inoculations), isolates of the A genotypes caused greater foliar symptoms and more vascular discoloration than isolates of the M genotypes on both cultivars of soybean. All isolates caused foliar symptoms in both cultivars and in three additional cultivars of soybean with resistance to brown stem rot. Greater differences between the A and M genotypes were seen in foliar symptoms than in the linear extent of xylem discoloration, and greater differences were seen in Kenwood than in BSR101. Inoculation of these genotypes into five cultivars of soybean with different resistance genes to brown stem rot showed a genotype × cultivar interaction. A similar distinction was found in an earlier study of the adzuki bean pathogen, P. gregata f. sp. adzukicola, and consistent with the nomenclature of that pathogen, the soybean pathogens are named the aggressive race (race A) and the mild race (race M) of P. gregata f. sp. sojae.


1999 ◽  
Vol 89 (3) ◽  
pp. 204-211 ◽  
Author(s):  
F. Workneh ◽  
G. L. Tylka ◽  
X. B. Yang ◽  
J. Faghihi ◽  
J. M. Ferris

The prevalence of brown stem rot (caused by Phialophora gregata), Heterodera glycines, and Phytophthora sojae in the north central United States was investigated during the fall of 1995 and 1996. Soybean fields were randomly selected using an area-frame sampling design in collaboration with the National Agricultural Statistics Service. Soil and soybean stem samples, along with tillage information, were collected from 1,462 fields in Illinois, Iowa, Minnesota, Missouri, and Ohio. An additional 275 soil samples collected from Indiana were assessed for H. glycines. For each field, the incidence and prevalence of brown stem rot was assessed in 20 soybean stem pieces. The prevalence and recovery (expressed as the percentage of leaf disks colonized) of P. sojae and the prevalence and population densities of H. glycines were determined from the soil samples. The prevalence of brown stem rot ranged from 28% in Missouri to 73% in Illinois; 68 and 72% of the fields in Minnesota and Iowa, respectively, showed symptomatic samples. The incidence of brown stem rot was greater in conservation-till than in conventional-till fields in all states except Minnesota, which had few no-till fields. P. sojae was detected in two-thirds of the soybean fields in Ohio and Minnesota, whereas 63, 55, and 41% of the fields in Iowa, Missouri, and Illinois, respectively, were infested with the pathogen. The recovery rates of P. sojae were significantly greater (P ≤ 0.05) in conservation-till than in conventional-till fields in all states except Iowa. H. glycines was detected in 83% of the soybean fields in Illinois, 74% in Iowa, 71% in Missouri, 60% in Ohio, 54% in Minnesota, and 47% in Indiana. Both the prevalence and population densities of H. glycines were consistently greater in tilled than in no-till fields in all states for which tillage information was available.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 953-956 ◽  
Author(s):  
M. S. Bachman ◽  
C. D. Nickell ◽  
P. A. Stephens ◽  
A. D. Nickell

Soybean accessions from China were screened in an attempt to identify unique sources of resistance to Phialophora gregata, the cause of brown stem rot. In 1994, over 500 accessions from the USDA Soybean Germplasm Collection, University of Illinois, Urbana-Champaign, were evaluated in the field at Urbana, IL, for reaction to brown stem rot. The accessions originated from nine provinces in central China and ranged in maturity from groups II to IV. Disease assessment was based on incidence of foliar symptoms and severity of stem symptoms produced by infection with natural inoculum. Based on field results, 64 putatively resistant lines were selected and evaluated in the greenhouse by a root-dip inoculation method. Thirteen accessions with levels of resistance equal to those of resistant standards were identified from five provinces. These lines may have value as donors of unique sources of resistance to brown stem rot.


2000 ◽  
Vol 90 (8) ◽  
pp. 875-883 ◽  
Author(s):  
Weidong Chen ◽  
Craig R. Grau ◽  
Eric A. Adee ◽  
Xiangqi Meng

A molecular marker was developed to separate and identify subspecific populations of Phialophora gregata, the causal agent of soybean brown stem rot. A variable DNA region in the intergenic spacer of the nuclear rDNA was identified. Two specific primers flanking the variable region were developed for easy identification of the genotypes using polymerase chain reaction (PCR). These two specific primers amplified three DNA products. The three PCR products were used to separate isolates of P. gregata into distinct genotypes: A (1,020 bp), B (830 bp), and C (660 bp). Genotype C was found in isolates obtained from Adzuki beans from Japan, whereas all 292 isolates obtained from soybean and the 8 isolates from mung bean belonged to either genotype A or B. The original nondefoliating (type II) strain ATCC 11073 (type culture of P. gregata) belonged to genotype B. The difference between genotypes A and B was due only to an 188-bp insertion or deletion; genotype C, however, differs from genotypes A and B at 58 point mutations, in addition to the length difference. Isolates of both genotypes A and B were widespread in seven Midwestern states. Genotype A was found mostly in certain susceptible soybean cultivars like Sturdy and Pioneer 9305, whereas genotype B was found predominately in brown stem rot-resistant soybean cvs. Bell, IA 3003, and Seiben SS282N. The specific primers were also used to directly detect cultivar-preferential infection by the two genotypes in infected soybean stems growing in the same field. Data from direct detection in soybean stems showed that cultivar-preferential infection by the two genotypes of P. gregata was significant.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1297-1301 ◽  
Author(s):  
G. M. Tabor ◽  
G. L. Tylka ◽  
C. R. Bronson

Growth chamber experiments were conducted to investigate whether parasitism by increasing population densities of Heterodera glycines, the soybean cyst nematode, increases the incidence and severity of stem colonization by the aggressive genotype A and the mild genotype B of Cadophora gregata (Phialophora gregata), causal agents of brown stem rot of soybeans. Soybean genotypes with three combinations of resistance and susceptibility to H. glycines and genotype A of C. gregata were inoculated with each genotype of C. gregata alone or each genotype with two population densities of H. glycines eggs, 1,500 or 10,000 per 100 cm3 of soil. Stems of two H. glycines-susceptible soybeans were more colonized by both aggressive and mild genotypes of C. gregata in the presence of high than in the presence of low H. glycines population density.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1047-1047 ◽  
Author(s):  
M. Garbelotto ◽  
I. Chapela

The basidiomycete Heterobasidion annosum (Fr.:Fr.) Bref. is a pathogen of conifers in the Northern Hemisphere. This fungus has been previously reported from Pinus spp. (1) and from Abies religiosa (H.B.K.) Schl. et Cham. (2) in Central Mexico. In 1998, H. annosum was collected for the first time from stumps of Abies hickeli Flous et Gaussen in the Southern Mexican State of Oaxaca, at an altitude of 2,900 m (Lat 17° 28′ N, Long 96° 31′ W). Although standing trees at the sampled site were asymptomatic, the sapwood and heartwood of several fir stumps were extensively decayed. The white laminated rot was similar to that caused by H. annosum on other Abies spp. Decay pockets extended to the upper surface of the stumps, indicating the fungus had infected and colonized the tree butts prior to tree felling. H. annosum basidiocarps were found both outside the roots in the duff layer and inside the decay pockets. The anamorph of H. annosum (Spiniger meineckellum (A. Olson) Stalpers) was isolated from the context of three basidiocarps. Based on comparative analysis of DNA sequences of the nuclear ribosomal internal transcribed spacer region, all three isolates belonged to the North American S intersterility group (ISG). This report expands the host and the geographic ranges of the North American S ISG, and represents the world's southernmost finding of an Abies species infected by this pathogen. References: (1) R. Martinez Barrera and R. Sanchez Ramirez. Ciencia Forestal 5(26):3, 1980. (2) M. Ruiz-Rodriguez and L. M. Pinzon-Picaseno. Bol. Soc. Bot. Mexico 54:225, 1994.


2003 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Megan E. Patzoldt ◽  
Weidong Chen ◽  
Brian W. Diers

A new set of soybean accessions from south-central China were added to the USDA germplasm collection in 1996. Previous studies have shown that accessions with high levels of resistance to brown stem rot (BSR) can be found in germplasm collected from central and southern China. The objective of this study was to screen these accessions and identify those with resistance to BSR. In a preliminary study, 85 of 623 accessions tested were identified as resistant to BSR. In the second study, these 85 accessions were challenged with multiple biotypes of Phialophora gregata f. sp. sojae to identify those accessions with the strongest resistance. From these two studies, ten accessions were identified that had BSR resistance equal to or greater than the current resistant sources. Accepted for publication 10 June 2003. Published 1 July 2003.


2019 ◽  
Vol 109 (7) ◽  
pp. 1157-1170 ◽  
Author(s):  
Jaime F. Willbur ◽  
Paul D. Mitchell ◽  
Mamadou L. Fall ◽  
Adam M. Byrne ◽  
Scott A. Chapman ◽  
...  

As complete host resistance in soybean has not been achieved, Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum continues to be of major economic concern for farmers. Thus, chemical control remains a prevalent disease management strategy. Pesticide evaluations were conducted in Illinois, Iowa, Michigan, Minnesota, New Jersey, and Wisconsin from 2009 to 2016, for a total of 25 site-years (n = 2,057 plot-level data points). These studies were used in network meta-analyses to evaluate the impact of 10 popular pesticide active ingredients, and seven common application timings on SSR control and yield benefit, compared with not treating with a pesticide. Boscalid and picoxystrobin frequently offered the best reductions in disease severity and best yield benefit (P < 0.0001). Pesticide applications (one- or two-spray programs) made during the bloom period provided significant reductions in disease severity index (DIX) (P < 0.0001) and led to significant yield benefits (P = 0.0009). Data from these studies were also used in nonlinear regression analyses to determine the effect of DIX on soybean yield. A three-parameter logistic model was found to best describe soybean yield loss (pseudo-R2 = 0.309). In modern soybean cultivars, yield loss due to SSR does not occur until 20 to 25% DIX, and considerable yield loss (−697 kg ha−1 or −10 bu acre−1) is observed at 68% DIX. Further analyses identified several pesticides and programs that resulted in greater than 60% probability for return on investment under high disease levels.


Sign in / Sign up

Export Citation Format

Share Document