vascular discoloration
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

Plant Disease ◽  
2021 ◽  
Author(s):  
Xin Li ◽  
Hua-jun Kang ◽  
Qian Zhao ◽  
Yanxia Shi ◽  
Ali Chai ◽  
...  

Coriander (Coriandrum sativum L), which belongs to the family Apiaceae, is a medicinal and aromatic plant. In China, coriander is widely cultivated in several parts as a vegetable crop. During August 2019 to June 2020, wilting symptoms were observed on coriander (cv. 'Tiegan') in a commercial plantation, with disease incidence of approximately 25 to 40% in Xiajiawang village (118°88′E, 35°46′N) of Linyi city, Shandong province, China. Symptoms included wilting and leaf yellowing, plant stunting, root rot, and vascular discoloration of the stem bases and roots. A total of eight symptomatic plants were uprooted and collected from three fields. To determine the cause of the disease, symptomatic root tissues were excised, surface disinfected with 75% ethanol for 30s, followed by three washes with sterile distilled water, and then placed on potato dextrose agar (PDA) and incubated at 28°C for 6 days. In total, 10 cultures were obtained and purified by single-spore subcultures on PDA for morphological identification. The morphology of multiple colonies was consistent and originally white, later becoming light to dark purple in color with abundant aerial hyphae. Macroconidia were hyaline and falcate, straight to slightly curved, 3-4 septate, 27.86 to 34.23 × 4.07 to 6.13 μm (n = 30), with apical cells curved and basal cells foot-shaped. Microconidia were hyaline, oval or ellipsoid, 0-1 septate, with a flat base, measuring 5.67 to 9.37 × 3.66 to 5.40 μm (n = 30). These morphological characteristics resembled those of Fusarium oxysporum (Leslie and Summerell 2006). Genomic DNA was extracted from fungal mycelium using the Plant Genomic DNA Kit (Tiangen, China). The nuclear ribosomal internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF-1α) and mitochondrial small subunit (mtSSU) genes were amplified with primer pairs ITS1/ITS4 (White et al. 1990), EF1Ha/EF2Tb (O’ Donnell et al. 1998) and NMS1a/NMS2b (Li et al. 1994). The resulting ITS (550-bp), TEF1-α (681-bp) and mtSSU (692-bp) sequences of isolate QC20091601 were deposited in GenBank (accession nos. MW900439, MW692008 and MW711738, respectively). BLAST analysis demonstrated 100% identities to the ITS, TEF-1α and mtSSU sequences of F. oxysporum (MN856370.1, MN507110.1 and MN386808.1), respectively. According to the morphological and molecular identification, the fungus was identified as F. oxysporum. In the pathogenicity test, healthy coriander plants (cv. 'Tiegan') at the 4-true-leaf stage were inoculated by dipping the roots into a conidial suspension of 1 × 107 conidia/mL for 10 min. Plants dipped in sterile distilled water served as controls. All treated plants were placed in a greenhouse maintained at temperature 30°C and 80% relative humidity. Ten days later, inoculated plants developed typical symptoms of leaf yellowing, wilting and vascular discoloration, which were identical to those observed in the fields, whereas the control plants remained healthy. F.oxysporum was reisolated from the symptomatic roots, and its identity was confirmed by PCR with the primes described above, fulfilling Koch's postulates. To our knowledge, this is the first report of F. oxysporum as a pathogen on coriander in China. F. oxysporum is a destructive plant pathogen with an unusually broad host range and worldwide distribution, prevention and control measures should be taken in advance.



Plant Disease ◽  
2021 ◽  
Author(s):  
Concepció Moragrega ◽  
Júlia Carol ◽  
Enric Bisbe ◽  
Enric Fabregas ◽  
Isidre Llorente

Ailanthus altissima (Mill.) swingle is a highly invasive tree that has become established worldwide, especially in the Mediterranean Basin because of its good drought resistance. Ailanthus altissima is included in the list of Invasive Alien Species of the EU, so measures for eradication and management are required. Assessment for potential biological control agents is of great interest to manage this invasive tree in natural ecosystems. Verticillium dahliae Kleb. and Verticillium nonalfalfae Inderb. et al. (formerly V. albo-atrum Reinke & Berthold) have been reported as the causal agents of Verticillium wilt and mortality of ailanthus (Shall and Davis 2009; Rebbeck et al., 2013; Snyder et al., 2013; Brooks et al. 2020). Ailanthus trees with Verticillium wilt symptoms (wilt, premature defoliation, terminal dieback, yellow vascular discoloration, and mortality) were detected for the first time in 2007 in Celrà (42.040466N, 2.864436E) (Catalonia, Northeastern Spain), then spread to neighboring ailanthus populations. In 2018, ailanthus trees in a 570 km2 area in Catalonia were surveyed for disease symptoms. The incidence of wilt disease in ailanthus trees in forest ecosystems ranged from 50 to 90%, and the severity, 60 to 92%. One hundred and fifty branch samples showing wilt symptoms were collected and disinfected by immersion in 1% sodium hypochlorite for 2 min, then cut into 5mm pieces. These were placed onto PDA plates and incubated at 22.5 °C and 12 h light photoperiod for 7-10 days. Eighty-four tentative Verticillium sp. isolates were recovered and subcultured on modified water agar (WA-p) and PDA for identification (Inderbitzin et al. 2011, 2013). The majority of isolates (77 %) were identified as V. dahliae based on morphology; production of brown-pigmented microsclerotia and conidia features and dimensions (5.7 ± 0.9 μm long). Sequencing of mycelial DNA using primer pair ITS1-F and ITS4, resulted in consensus sequences of 503 bp. BLASTn analysis of ITS sequence of native isolate VdGi688 gave 100% identity to the ITS sequences of V. dahliae type strain PD322 (92% coverage) and Vd16_9 (100% coverage). In addition, 23% isolates morphologically corresponded to V. albo-atrum or V. nonalfalfae; melanized resting mycelia and round to oval-shaped conidia (5.2 ± 0.9 μm × 2.2 ± 0.5 μm). The ITS consensus sequence (544 bp) of native isolate VaaGi02 gave 99% identity (90-100 % coverage) to V. albo-atrum isolates CBS 127169, PSU 140, Vaa_TN1 and to V. nonalfalfae type PD592, CBS5451.88 and Vert 18. Sequences from isolates VdGi688 and VaaGi02 were deposited in GenBank as MW624723 and MW624724, respectively. Koch’s postulates for seven V. dahliae isolates and eight V. albo-atrum isolates were fulfilled by injection of 1 mL of 1 x 107 conidia/mL suspension into the stem of A. altissima seedlings under greenhouse conditions. Six plants were inoculated per isolate in two independent experiments. Control plants were inoculated with sterile distilled water. All isolates caused leaf chlorosis, defoliation, and apical stem death, as well as internal necrosis and vascular discoloration. Control plants remained asymptomatic. The pathogens were re-isolated from internal symptomatic tissues of inoculated plants. To our knowledge, this is the first report of V. dahliae and V. albo-atrum sensu lato causing Verticillium wilt on A. altissima in Spain. The study suggests the potential of native isolates of Verticillum spp. in the biological control of ailanthus in the Mediterranean Basin. This work was funded by the Diputació de Girona (Spain) (2017/8719, 2019/3091, 2020/7565, and 2021/1468).



Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 149
Author(s):  
Maria Michela Salvatore ◽  
Artur Alves ◽  
Anna Andolfi

The genus Neofusicoccum is comprised of approximately 50 species with a worldwide distribution and is typically associated with plants. Neofusicoccum is well-known for the diseases it causes on economically and ecologically relevant host plants. In particular, members of this genus are responsible for grapevine diseases, such as leaf spots, fruit rots, shoot dieback, bud necrosis, vascular discoloration of the wood, and perennial cankers. Many secondary metabolites, including (−)-botryoisocoumarin A, botryosphaerones, cyclobotryoxide and isosclerone, were identified from species of Neofusicoccum and their structural variability and bioactivities might be associated with the role of these compounds in the fungal pathogenicity and virulence. In this review, we summarize the secondary metabolites from Neofusicoccum species focusing on the role of these compounds in the interaction between the fungus and host plant.



2019 ◽  
Author(s):  
Arsenio D. Ndeve ◽  
Philip A. Roberts

ABSTRACTAssessment of the severity of Fusarium wilt disease in cowpea and other crops relies mainly on visual rating scales which are prone to errors, which can compromise the reproducibility of the data. Furthermore, the rating scales require considerable practical training and routine experience for reliable assessment. Two objective metrics, stem vascular discoloration length (%VDL) and number of Fusarium necrotic vessels (NFNV), for quantitative measurement of vascular damage incited by Fusarium oxysporum f. sp. tracheiphilum race 4 (Fot4) of cowpea, were compared and their utility as a measure of disease severity and potential usefulness in other crop pathosystems is proposed. The metrics were tested in seven F2 populations and one F2:3 population, segregating for wilt response, and inoculated with race Fot4 at the seedling stage. %VDL and NFNV were highly correlated with plant wilting for all populations (r = 0.51 – 0.93 and 0.52 – 0.94, respectively). Furthermore, the relationships between the variables were linear in all populations (R2 = 0.81 to 0.87 and 0.71 to 0.91), indicating that they can provide accurate and reliable measurement of severity of Fusarium wilt disease. Also, %VDL and NFNV were strongly correlated (r = 0.88 - 0.97) and demonstrated a linear relationship (R2 = 0.69 – 0.94). Analysis of goodness-of-fit in two F2 populations revealed that errors in measurement of vascular discoloration length can result in higher segregation distortion when compared to enumeration of necrotic vessels. However, both metrics were highly effective in accounting for the severity of vascular damage caused by Fusarium wilt disease.



2017 ◽  
Vol 107 (11) ◽  
pp. 1399-1405 ◽  
Author(s):  
Jasper R. L. Depotter ◽  
Luis Rodriguez-Moreno ◽  
Bart P. H. J. Thomma ◽  
Thomas A. Wood

Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.



Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 866-873 ◽  
Author(s):  
Baker Aljawasim ◽  
Paul Vincelli

Verticillium wilt, caused by Verticillium dahliae, is one of the most economically important diseases of woody hosts such as ash (Fraxinus spp.), sugar maple (Acer saccharum), and redbud (Cercis canadensis). The causal agent has a broad host range, including not only woody hosts but also important vegetable and field crops, and it is distributed worldwide. Diagnosis of V. dahliae in infected woody hosts is often based on the occurrence of vascular discoloration and time-consuming isolation. However, not all woody hosts exhibit vascular discoloration, and not all vascular discoloration symptoms are due to infection by V. dahliae. In this study, real-time polymerase chain reaction (PCR)-based assays were evaluated and employed for rapid and accurate detection of V. dahliae in different woody hosts. High-quality DNA was extracted in large quantities from presumptively infected woody hosts by collecting drill-press shavings from sample tissue, bead beating, and extracting using a cetyltrimethylammonium bromide method. Six published primer sets were evaluated against genomic DNA of V. dahliae as well as selected negative controls, and two sets (VertBt-F/VertBt-R and VDS1/VDS2) showed promise for further evaluation using DNA extracts from field samples. The VertBt primers amplified a species-specific 115-bp fragment of the expected size, while the VDS primers amplified the expected specific 540-bp fragment. However, the VertBt primer set exhibited higher sensitivity in detection of V. dahliae even in asymptomatic trees. The PCR-based methods developed here could be used as rapid tools for pathogen detection and monitoring, thus informing plant pathogen management decisions.



Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1432-1432 ◽  
Author(s):  
G. Sepúlveda-Chavera ◽  
W. Huanca ◽  
R. Salvatierra-Martínez ◽  
B. A. Latorre

Tomato (Solanum lycopersicum L.) is an important crop in the Azapa Valley (18°35′ S, 69°30′ W) in northern Chile, with approximately 600 ha of fresh tomatoes under greenhouses. Cultivars resistant to Fusarium oxysporum f. sp. lycopersici (FOL) races 1 and 2 are mainly used. However, in 2012 and 2013, Fusarium wilt incidence was 2 to 3%. Symptoms appeared unilaterally and consisted of yellowing, leaf wilting of lower leaves, dark brown vascular discoloration, and plant death. The aim of this study was to determine the causal agent of tomato wilt in seven tomato greenhouses in the Azapa Valley. Stem samples (5 × 5 mm) were obtained 10 cm of the stem base from wilted tomatoes ‘Naomi’ (BIOAMERICA S.A., Chile) or from Maxifort tomato rootstock (De Ruiter Seed, USA), both FOL resistant to races 1 and 2. Samples were washed with tap water, surface sterilized with 1% NaClO for 3 min, and incubated on sterile moist paper towels in petri plates for 5 days at 22°C. Mycelial fragments from white colonies, emerging from diseased tissues, were transferred to PDA. Six Fusarium isolates were characterized by the presence of hyaline macroconidia, mostly 3 to 5 septate, slightly curved (19.2 to 32.1 × 2.9 to 4.5 μm) and single-celled, oval to elongated microconidia (3.1 to 8.9 × 2.0 to 4.0 μm). Chlamydospores were single or in pairs. These isolates were identified as F. oxysporum (3). The identity of F. oxysporum was confirmed by PCR assays using genomic DNA of each isolated and the universal primers Uni F and Uni R that generate a 672-bp PCR product. The pathogenic form and races were determined by PCR assays using the specific primers uni, sp13, sp23, and sprl that were able to discriminate all the three FOL races as well as F. oxysporum f. sp. radicis-lycopersici (FORL) isolates (2). The sp13 and sp23 primers amplified DNA bands of 445 and 518 bp, confirming the identity of FOL race 3. However, sprl amplified a fragment of 947 bp corresponding to FORL (2). Pathogenicity tests were conducted on 25-day-old seedlings (10 seedlings per isolate) of tomato ‘Poncho Negro,’ which is susceptible to FOL and FORL. Seedling roots were cut, submerged for 5 min in conidial suspension of 2 × 106 conidia/ml, and transplanted to 250-ml plastic containers with sterile substrate (sand/peat, 1:1). Equally treated non-inoculated seedlings were left as controls. The first symptoms induced by each of the five FOL isolates appeared 8 days after incubation under greenhouse and were characterized by yellowing of older leaves, sometimes affecting one side of the plant, vascular discoloration of the stem, and eventually plant death. In contrast, all seedlings inoculated with a FORL isolate developed a necrotic lesion and vascular discoloration at the base of the stems near the soil line, followed by wilting and plant death. Control plants remained asymptomatic. F. oxysporum was re-isolated only from inoculated plants, completing Koch's postulates. FOL and FORL were reported earlier in other tomato growing areas of Chile (1), located over 1,000 km south of the Azapa Valley. However, this is the first report of FOL race 3 and FORL in the Azapa Valley and FOL race 3 is reported for the first time in Chile. References: (1) S. Acuña. Compendio de Fitopatógenos de Cultivos Agrícolas. Servicio Agrícola y Ganadero. Gobierno de Chile, 2008. (2) Y. Hirano and T. Arie. J. Gen. Plant Pathol. 72:273, 2006. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.



Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1008-1008 ◽  
Author(s):  
M. Berbegal ◽  
J. García-Jiménez ◽  
J. Armengol

In autumn 2012, severe branch cankers and diebacks of sweet cherry trees (Prunus avium L.) were observed in orchards located in two different growing areas in Alicante Province (eastern Spain). In affected trees, leaves become dried without defoliation. Sectorial wood necrosis was also observed, occasionally associated with swollen bark and gum exudates. Isolations were made from diseased branches by surface-disinfecting small fragments of symptomatic tissue in 0.5% NaOCl, double-rinsing in sterile water, and plating them onto potato dextrose agar (PDA) amended with 0.5 g liter−1 of streptomycin sulfate. Plates were incubated at 25°C in the dark for 10 days, and all colonies were transferred to PDA. Pink to red colonies with white margins were consistently isolated. All isolates produced hyaline, allantoid to oblong-ellipsoidal conidia, 4 to 6 × 1.5 to 2 μm. The fungus was identified as Calosphaeria pulchella (Pers.: Fr.) J. Schröt (anamorph Calosphaeriophora pulchella Réblová, L. Mostert, W. Gams & Crous) based on morphology (1). Identification of C. pulchella isolates was confirmed by sequence comparison in GenBank database using the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rDNA. Sequences showed 100% identity and 100% query coverage with C. pulchella reference isolate CBS 115999 (EU367451) (2). The ITS sequence of one of the isolates obtained in this study was deposited into GenBank (KJ396346). Two-year-old sweet cherry trees cv. Burlat were inoculated with two representative C. pulchella isolates from different orchards (1701 and 1702). A 5-mm cork borer was used to remove bark, and an agar plug from the growing margin of 20-day-old colonies was placed directly into the fresh wound, mycelium side down. Five trees were inoculated per isolate (five branches per tree) and 25 control branches were inoculated with non-colonized agar plugs. Inoculated tissue was covered with Vaseline and Parafilm to avoid the loss of water. Branches were taken to the laboratory 9 months after inoculation and thoroughly examined for canker development. The length of vascular discoloration was evaluated in each branch and resulting data were statistically analyzed. Length of vascular discoloration on the inoculated branches (6.6 ± 0.7) was significantly longer than in control plants (2.3 ± 0.3) at P < 0.001. Perithecia were neither observed on the artificially inoculated branches nor in the diseased sweet cherry trees from the sampled orchards. C. pulchella was re-isolated from the inoculated branches and no fungi were isolated from discolored tissue of the controls, confirming Koch's postulates. Canker of sweet cherry caused by C. pulchella is responsible for reducing yields and tree longevity in California and South Australia (3). Cultivated area of sweet cherry in Spain is around 25,000 ha. Hence, the potential economic loss from this pathogen could be substantial if left unchecked. To our knowledge, this is the first report of C. pulchella as a pathogen of sweet cherry trees in Spain. References: (1) M. E. Barr. Mycologia 77:549, 1985. (2) U. Damm et al. Persoonia 20:39, 2008. (3) F. P. Trouillas et al. Plant Dis. 96:648, 2012.



Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 853-853 ◽  
Author(s):  
F. Peduto Hand ◽  
R. A. Choudhury ◽  
W. D. Gubler

Pomegranates (Punica granatum L.) are an expanding industry in the United States with California growing approximately 32,000 acres with a crop value of over $155 million (1). During June and July of 2012, we observed severe limb and branch dieback in pomegranate orchards cv. Wonderful located in Contra Costa, Kings, and Kern counties of California. Disease symptoms included yellowing of leaves, branch and limb dieback, wood lesions, and canker formation. Dark brown Cytospora-like cultures were consistently isolated from active cankers on potato dextrose agar (PDA) amended with 100 mg l−1 tetracycline hydrochloride. Three isolates (UCCE1223, UCCE1233, and UCCE1234) representative of each orchard were sub-cultured onto PDA and incubated at 22°C under fluorescent intermittent light (12 h light, 12 h dark). Fungal colonies had whitish mycelia that turned olive green to dark brown with maturity and formed globose and dark brown pycnidia after 12 days. Conidia were hyaline, aseptate, allantoid, and (4) 4.5 to 5 (6) × (1) 1.5 (2) μm (n = 180). Pycnidia formed in culture measured (250) 350 to 475 (650) μm in diameter (n = 40). Identification of the isolates was confirmed by sequence comparison of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rDNA and part of the translation elongation factor 1-α gene (EF1-α) with sequences available in GenBank. Consensus sequences of both genes of all isolates showed 99% homology to the species Cytospora punicae Sacc. (2). All sequences were deposited in GenBank (Accession Nos. KJ621684 to 89). Pathogenicity of the isolates was determined by branch inoculation. In December 2012, 3-year-old branches of P. granatum cv. Wonderful were inoculated by placing 5-mm-diameter mycelium plugs from the growing margin of 14-day-old PDA cultures in fresh wounds made with a 5-mm-diameter cork-borer. Eight branches per isolate were inoculated on eight different trees. Eight control branches were inoculated with non-colonized PDA agar plugs. Inoculations were covered with Vaseline and wrapped with Parafilm to retain moisture. Branches were harvested in August 2013 and examined for canker development and the extent of vascular discoloration spreading downward and upward from the inoculation point. Isolations from the edge of discolored tissue were conducted to fulfill Koch's postulates. C. punicae was re-isolated from 100% of the inoculated branches. Total length of vascular discoloration averaged 30.2 mm in branches inoculated with the three C. punicae isolates and 9 mm in the control branches. No fungi were isolated from the slightly discolored tissue of the controls. To our knowledge, this is the first report of C. punicae as a fungal trunk pathogen of pomegranate trees in the United States. References: (1) California County Agricultural Commissioners' Data, 2010 Crop Year. USDA NASS California field office, retrieved from http://www.nass.usda.gov/Statistics_by_State/California/ Publications/AgComm/201010cactb00.pdf , 2011. (2) P. A. Saccardo. Sylloge Fungorum 3:256, 1884.



Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 996-996 ◽  
Author(s):  
M. Powell ◽  
B. Gundersen ◽  
C. Miles ◽  
K. Coats ◽  
D. A. Inglis

Symptoms of Verticillium wilt were observed on lettuce (Lactuca sativa L.) harvested from high tunnel and open field experimental plots in annual, consecutive spring plantings in western Washington from 2010 to 2012. Leaves had v-shaped, chlorotic lesions, and yellow or brown vascular tissue was noted in the crowns. Total disease incidence increased from 0.2% in 2010 to 1.9% in 2011 and to 14.4% in 2012. Verticillium spp. obtained from infected crown tissues and cultured on half-strength potato dextrose agar medium produced yellow pigment, black microsclerotia, white mycelia, tan chlamydospores, and uniseptate conidia averaging 10.6 × 3.7 μm. Isolates were identified tentatively as Verticillium tricorpus I. (3). Three isolates, Vt.Ls.2010, Vt.Ls.2011-1, and Vt.Ls.2011-2, were evaluated for pathogenicity on 4-week-old ‘Coastal Star’ seedlings in two greenhouse trials. In Trial I, four replicates of two duplicate plants per each isolate, and in Trial II, five replicates of one plant per each isolate were inoculated with conidial suspensions adjusted to 2.0 × 106 and 5.0 × 106 conidia/ml, respectively. Additionally, in each trial, two sets of control treatments of five plants each were inoculated with either an isolate of V. dahliae at the same conidial concentration or with sterile water. Root tips were cut and exposed to the suspensions for 5 s, then seedlings were transplanted into Sunshine Mix #1 (SunGro Horticulture Distribution Inc., Bellevue, WA), and kept in a greenhouse at 17.7 ± 3.4°C. Plants were harvested 8 to 9 weeks post-inoculation, and symptoms were rated visually. Vt.Ls.2010, Vt.Ls.2011-1, and Vt.Ls.2011-2 caused chlorosis and vascular discoloration on 25, 13, and 13% of the plants in Trial I; and 40, 60, and 20% of plants in Trial II, respectively. V. dahliae caused similar symptoms on 25 and 40% of the plants in the two trials, respectively, but these plants had greater intensity and length of vascular discoloration compared with the three test isolates. None of the water control plants were symptomatic. All V. tricorpus isolates were recovered from inoculated plants, and colony morphologies were similar to the original isolates. The internal transcribed spacer (ITS) rDNA of isolate Vt.Ls.2010 was amplified with ITS4 and ITS6 primer sets. ITS rDNA sequences between Vt.Ls.2010 and two isolates of V. tricorpus in GenBank (Accession Nos. FJ900211 and AB353343) were 100% identical. V. tricorpus is considered a weak pathogen of lettuce crops in California (2), but authors in Japan recently reported pathogenic isolates of V. tricorpus on lettuce (4). To our knowledge, this is the first report of Verticillium wilt caused by V. tricorpus in Washington. Lettuce is the number two crop grown in high tunnels in the United States (1), and cropping lettuce continuously in them can increase the risk of this and other soilborne pathogens. References: (1) E. E. Carey et al. HortTechnology 19:37, 2009. (2) Q.-M. Qin et al. Plant Dis. 92:69, 2008. (3) H. C. Smith. N. Z. J. Agric. Res. 8:450, 1965. (4) T. Usami et al. J. Gen. Plant Pathol. 77:17, 2010.



Sign in / Sign up

Export Citation Format

Share Document