scholarly journals Pittosporum tobira: A New Host for Tomato spotted wilt virus

Plant Disease ◽  
2000 ◽  
Vol 84 (4) ◽  
pp. 491-491 ◽  
Author(s):  
A. Gera ◽  
A. Kritzman ◽  
J. Cohen

In July 1998, Pittosporum tobira shrubs, grown in a nursery in the Sharon Valley of Israel, developed foliar ring spots, mild mosaic, and tip necrosis. Of 15 samples tested for the presence of Tomato spotted wilt virus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Loewe Biochemica, Otterfing, Germany), 14 were positive for TSWV. Virus in crude sap extracted from symptomatic tissue was mechanically transmitted to Emilia spp., Petunia hybrida, Nicotiana glutinosa, N. benthamiana, and N. rustica plants, which developed symptoms characteristic of TSWV infection (1). ELISA tests of leaf sap extracted from naturally infected P. tobira and mechanically inoculated indicator plants gave a strong positive reaction to TSWV. Leaf samples of P. tobira were analyzed by transmission electron microscopy in leaf-dip preparations and thin sections of leaf tissues. Virus particles typical of a tospovirus were observed only in samples taken from symptomatic leaves. Primers specific to the nucleocapsid gene of TSWV were used in a reverse transcription-polymerase chain reaction (RT-PCR) assay to verify the presence of TSWV. RT-PCR gave an expected PCR product of ≈850 bp. The amplicon was cloned in the pGEM-T vector, and the recombinant clone was sequenced. The sequence of the cloned PCR product confirmed the identity of TSWV, verifying TSWV infection of P. tobira. This is the first report of infection of P. tobira by TSWV. Reference: (1) Y. Antignus et al. Phytoparasitica 25:319, 1997.

Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1155-1155 ◽  
Author(s):  
J. C. Díaz-Pérez ◽  
H. R. Pappu

During the 2000 spring season, tomatillo (Physalis ixocarpa) plants showing chlorotic streaks on leaves were observed in an experimental plot of the University of Georgia's Coastal Plain Experiment Station in Tift County, GA. Leaf samples from 192 plants were collected. These included plants that had chlorotic streaks and those without obvious symptoms. Samples were tested by ELISA using a commercially available Tomato spotted wilt virus (TSWV) detection kit (Agdia Inc., Elkhart, IN). TSWV was found in 10 samples that had chlorotic streaks on leaves, and the remaining plants with no obvious symptoms were negative for TSWV. Infected plants were found in both cultivars, Verde Puebla and Toma Verde. The presence of the virus had no apparent effect on plant size or fruit appearance. TSWV infection of the ELISA-positive samples was further verified by immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) (1). The primer pair (5′-ATGTCTAAGGTTAAGCTC-3′ and 5′ TTAAGCAAGTTCTGTGAG-3′) represented the first and last 18 bases of the coding region of the nucleocapsid gene of TSWV, respectively, and produced approximately 800-bp PCR product (1). IC-RT-PCR gave a single DNA band of expected size and no amplification was found in the uninfected control. This is the first report of TSWV on tomatillo in Georgia. Reference: (1) R. K. Jain et al. Plant Dis. 82:900, 1998.


2000 ◽  
Vol 1 (1) ◽  
pp. 31
Author(s):  
A. Gera ◽  
A. Kritzman ◽  
J. Cohen

In July 1998, Pittosporum tobira shrubs, grown in a nursery in the Sharon Valley of Israel, developed foliar ring spots, mild mosaic, and tip necrosis. Of 15 samples tested for the presence of Tomato spotted wilt virus (TSWV) with a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Loewe Biochemica, Otterfing, Germany), 14 were positive for TSWV. Posted 5 June 2000.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1154-1154 ◽  
Author(s):  
M. T. Momol ◽  
H. R. Pappu ◽  
W. Dankers ◽  
J. R. Rich ◽  
S. M. Olson

In spring 2000, symptoms similar to thrips-vectored spotted wilt disease caused by Tomato spotted wilt virus (TSWV) were observed on habanero (Capsicum chinense) and tabasco (Capsicum frutescens) peppers in north Florida. Habanero peppers were from commercial fields grown for specialty markets and tabasco peppers were from research plots. Symptoms observed were leaf necrosis, fruit drop, necrotic stem lesions, and stunting. Fruit symptoms included chlorotic and necrotic spotting and distinct ring pattern and distortion. The incidence of symptomatic habanero peppers was 7 to 8% in one of the three production fields visited, and a lower incidence in two other fields (all in Jackson County). In tabasco pepper, TSWV was detected in spring and fall 1999, and spring 2000 seasons in 10 to 15% of the plants (Gadsden County). Adjacent tomato fields contained scattered plants exhibiting symptoms of TSWV. Diagnosis of TSWV from symptomatic stems, leaves, and fruit of habanero and tabasco peppers was confirmed by a double antibody sandwich enzyme linked immunosorbent assay (ELISA) using a commercially available kit (Agdia Inc., Elkhart, IN). ELISA values ranged from 1.57 to 1.95 for habanero pepper and 0.80 to 0.95 for tabasco pepper. The mean ELISA value of the negative controls was 0.001. To further verify TSWV infection, immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) was performed (1). The primer pair 5′-ATGTCTAAGGTTAAGCTC-3′ and 5′-TTAAGCAAGTTCTGTGAG-3′ represented the first and last 18 bases of the coding region of the nucleocapsid gene of TSWV, respectively, and produces approximately 800 bp PCR product (1). IC-RT-PCR gave a single DNA band of expected size in both habanero and tabasco samples, while no amplification was found in an uninfected pepper sample. This is the first report of TSWV on habanero and tabasco peppers in Florida. TSWV continues to be an economically important disease constraint to the production of tomato, pepper (C. annuum), peanut, and tobacco in the southeastern United States (observations from Georgia and Florida). Meanwhile, the known host range is expanding to include new species of cultivated vegetables. References: (1) R. K. Jain et al.. Plant Dis. 82:900, 1998.


2009 ◽  
Vol 36 (2) ◽  
pp. 133-137 ◽  
Author(s):  
P. M. Dang ◽  
D. L. Rowland ◽  
W. H. Faircloth

Abstract Diagnosis of Tomato spotted wilt virus (TSWV) in peanut can be accomplished by enzyme-linked immunosorbent assay (ELISA) or reverse transcription polymerase chain reaction (RT-PCR) but there has been no report of a direct comparison of the success of the two assays in evaluating infection rates of field-grown peanut. We collected peanut root samples from field-grown plants, 76 in 2006 and 48 in 2007, and tested these samples by both ELISA and RT-PCR assays for the presence of TSWV. Out of 124 samples, 50 (40.3%) and 57 (46.0%) were positive for TSWV by ELISA and RT-PCR respectively. In 13.7% of these samples, ELISA and RT-PCR differed in their results. However, Chi square analysis showed no significant difference between the results for these two assays. This result supports the conclusion that ELISA and RT-PCR are comparable for detecting TSWV infection rates in field-grown peanuts.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 526-526 ◽  
Author(s):  
S. Adkins ◽  
C. A. Baker

Desert rose (Adenium obesum (Forssk.) Roem. & Schult), a member of the family Apocynaceae, is characterized by fleshy stems and leaves and colorful flowers. This exotic ornamental, originally from southeast Africa, is propagated vegetatively and is a perennial in warm climates. Virus-like foliar symptoms, including chlorotic ring and line patterns, were observed in the fall of 2004 on one of five stock plants being maintained in a greenhouse in Fort Pierce, FL. Inclusion body morphology suggested the presence of a Tospovirus in the symptomatic plant, and Tomato spotted wilt virus (TSWV) was specifically identified in this plant using a commercially available double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia, Elkhart, IN). TSWV was not detected in symptomless desert rose plants nor was Impatiens necrotic spot virus detected in any of the plants using DAS-ELISA. Graft transmission of TSWV to other desert rose plants was successful. Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA of the symptomatic plant confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579-bp region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. No product was amplified from symptomless plants. Since these 3-year-old plants were grown on-site from seed and only expressed symptoms 2 months following damage to the greenhouse by hurricanes Frances and Jeanne, it is likely that viruliferous thrips were introduced from local vegetable or ornamental production areas during or following the storms. To our knowledge, this is the first report of TSWV infection of desert rose in Florida, although TSWV was observed in this plant in Europe approximately 10 years ago (3,4). Because of the wide distribution of TSWV in the United States, the increasing popularity of desert rose, and the recent identification of Cucumber mosaic virus in this host (2), attention to sanitation and insect vector management is merited during desert rose propagation and production. References: (1) S. Adkins and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) J. Mertelik et al. Acta Hortic. 432:368, 1996. (4) J. Th. J. Verhoeven and J. W. Roenhorst. Acta Hortic. 377:175, 1994.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae and has a wide host range including important crops such as tomato, pepper, tobacco, peanut, and onion. In areas of Georgia, soybean (Glycine max) is double cropped between two onion crops and as a rotation crop with peanuts. Soybeans do not show any TSWV symptoms, and therefore, have not been tested on a large scale for the virus. However, because symptomless weed and crop plants provide a reservoir for TSWV and the thrips vectors (2), a survey was conducted during the summer of 2005 to evaluate the occurrence of TSWV in soybean. The survey took place in seven counties in southern Georgia with field sizes ranging between 0.4 and 20 ha (1 and 50 acres). Soybean cultivars included Haskell, DP7220, DP6770, Pioneer 97B52, and Vigoro V622NRR. Of 848 randomly selected plants tested using the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN), 6.6% tested positive for TSWV. Plants testing positive ranged from seedling to the pod-setting stages. Leaves and roots of several plants tested positive, indicating a systemic infection. Soybean plants testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation, and the blotted samples were processed according to the manufacturer's protocol. Reverse transcription-polymerase chain reaction using punch-outs from the FTA cards and TSWV nucleocapsid gene specific forward and reverse primers (5′-TTAAGCAAGTTCTGTGAG-3′ and 5′-ATGTCTAAGGTTAAGCTC-3′), respectively (4), confirmed the identity of TSWV. TSWV has been found in soybean in other parts of the world (1) but has only been reported in the United States in a survey from Tennessee (3). To our knowledge, this is the first report of the occurrence of TSWV in soybean in Georgia. The role soybean plays as a reservoir or green bridge for thrips and TSWV is currently unknown. References: (1) A. R. Golnaraghi et al. Plant Dis. 88:1069, 2004. (2) R. L. Groves et al. Phytopathology 91:891, 2001. (3) B. S. Kennedy and B. B. Reddick. Soybean Genet. Newsl. 22:197, 1995. (4) H. R. Pappu et al. Tob. Sci. 40:74, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 525-525 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos ◽  
S. M. Olson

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae. It has many important crop hosts including tomato, pepper, tobacco, peanut, and onion. In Georgia, Vidalia onions (Allium cepa), a close relative of leek, can be infected by TSWV and Iris yellow spot virus (IYSV), which is another thrips-vectored tospovirus (2). For this reason, samples of leek transplants with virus-like symptoms in one field at the border of Georgia and Florida were tested for the presence of TSWV and IYSV. The transplants had been grown from seed in a greenhouse at the same location. The sampled plants exhibited extended bleaching of leaf tips and necrotic lesions. These symptoms were also seen on onion plants infected with TSWV and IYSV. The only natural infections of leek with IYSV have been reported thus far only from Reunion Island (4) and Slovenia (1), but to our knowledge, TSWV has not been reported as a pathogen of leek. Green tissue near the necrotic lesions and bleached tips of one symptomatic leaf per plant was sampled and analyzed using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN). Of 90 plants tested, eight were positive for TSWV and none were positive for IYSV. Leek samples testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation and then processed according to the manufacturer's protocol. Punch-outs from the FTA cards were used for reverse transcription polymerase chain reaction (RT-PCR) with the TSWV-specific forward primer (5′-TTAAGCAAGTTCTGTGAG-3′) and reverse primer (5′-ATGTCTAAGGTTAAGCTC-3′) (3) to confirm the identity of TSWV. The primers are specific to the viral nucleocapsid gene. An amplicon of the expected size (774 bp) was produced from TSWV ELISA-positive leek plants, but not from healthy controls. TSWV has been found in many plants worldwide, but to our knowledge this is the first report of TSWV infecting leek. The effect that TSWV has on leek production is currently unknown. References: (1) D. A. Benson et al. Nucleic Acids Res. 1:32 (Database issue):D23-6, 2004. (2) S. W. Mullis et al. Plant Dis. 88:1285, 2004. (3) H. R. Pappu et al. Tob. Sci. 40:74, 1996. (4) I. Robène-Soustrade et al. Online publication. New Dis. Rep. 11, 2005.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 202-202 ◽  
Author(s):  
N. A. Barkley ◽  
D. L. Pinnow ◽  
M. L. Wang ◽  
G. A. Pederson

Tomato spotted wilt virus (TSWV; family Bunyaviridae, genus Tospovirus), which is vectored by several species of thrips (order Thysanoptera, family Thripidae), causes a destructive disease that affects many economically important host plants such as tomatoes, peppers, and peanuts. Controlling the spread of this disease is challenging, and currently, only limited strategies are available to prevent and/or control its dissemination, including early diagnosis, destruction of infected material, and elimination of the vector. TSWV has been previously reported in subterranean clover (Trifolium subterraneum), white clover (T. repens), and various unidentified wild clovers (Trifolium spp.) in North America and Australia (1,3), but never before in an African species. T. tembense (Fresen.), an herbaceous annual African clover that is mainly used for grazing, is part of the national germplasm collection housed at the Plant Genetic Resources Conservation Unit in Griffin, GA. TSWV was found naturally infecting several accessions of this species being grown for regeneration in a greenhouse during 2008. Initial putative identification of the virus was done by visual inspection of host symptoms that included ringspots, necrotic and chlorotic local lesions, sometimes mild systemic wilting, and eventually an overall decline of healthy tissue in the infected plants. This was subsequently confirmed by double-antibody sandwich (DAS)-ELISA and reverse transcription (RT)-PCR. Primers (5′-ATGTCTAAGGTTAAGCTC-3′ forward and 5′-TTAAGCAAGTTCTGTGAG-3′ reverse) targeted the nucleocapsid gene of TSWV and amplified an expected product of approximately 800 bp (2). No product was amplified in any of the negative controls. Twenty-six individuals representing twelve plant accessions (PI 517788, 517790, 517792, 517793, 517809, 517832, 517842, 517845, 517851, 517871, 517876, and 517889) were screened for TSWV. Two to three individuals were targeted from each accession. Samples were chosen on the basis of the availability of leaf tissue to perform two diagnostic assays, ELISA and RT-PCR. Samples chosen for this study were all naturally infected by thrips. All but four individuals representing two plant accessions tested positive for the virus. The RT-PCR data substantiated the DAS-ELISA results and confirmed the suspected infection. More than 26% of the positive samples naturally infected by TSWV were further characterized by purifying and sequencing (bidirectionally) the RT-PCR product on an automated CEQ 8000 sequencer (Beckman Coulter, Fullerton, CA). The resulting sequences were aligned and edited using AlignIR (LI-COR, Lincoln, NE). More than 700 bp of sequence data (GenBank Accession No. FJ183743–FJ183746) was compiled and they displayed 98% identity with deposited TSWV nucleocapsid gene sequences in GenBank, with no similarity to any other targets. To our knowledge, this is the first report of TSWV infection in T. tembense. Accessions potentially resistant to TSWV within this species were identified and need to be further substantiated. T. tembense is a wild, native clover in Africa and could serve as a weed host for infection of nearby agronomically important crops. References: (1) I. Bitterlich and L. S. MacDonald. Can. Plant Dis. Surv. 73:137, 1993. (2) R. J. Holguín-Peña and E. O. Rueda-Puente. Plant Dis. 91:1682, 2007. (3) C. R. Wilson. Plant Pathol. 47:171, 1998.


Plant Disease ◽  
2001 ◽  
Vol 85 (10) ◽  
pp. 1123-1123 ◽  
Author(s):  
A. W. Wangai ◽  
B. Mandal ◽  
H. R. Pappu ◽  
S. Kilonzo

Tomato spotted wilt virus (TSWV) of the genus Tospovirus, family Bunyaviridae (1), causes an economically important virus disease in tomato in several parts of the world. The virus has a wide host range that includes numerous crops and weeds and is transmitted by at least seven species of thrips. Tomato crops in the Subukia, Bahati, and Kabazi areas of the Nakuru District in Kenya were affected by a disease suggestive of TSWV infection during the November 1999 to March 2000 tomato-growing season. Farmers reported up to 80% losses of their potential yields. Characteristic symptoms were noticed on fruits, especially when they were green. Distinct concentric rings on fruits, which later turned into brown, uneven ripening, were the most visible symptoms. Foliage did not develop pronounced symptoms, but mild bronzing was observed in a few cultivars. However, foliage senesced prematurely, starting with older leaves. Foliar symptoms were mistaken for blight infection, and as a result, excessive fungicides were applied that failed to manage the disease. To test for TSWV infection, tomato leaf samples collected from the fields were tested initially with a TSWV test kit (HortiTech, Horticulture Research International, Wellesbourne, UK), and the results were confirmed by double-antibody sandwich-enzyme-linked immunosorbent assay with antibodies from Agdia Inc. (Elkhart, IN). Further molecular characterization was done using reverse transcription-polymerase chain reaction (RT-PCR). Total RNA was extracted from symptomatic leaves of tomato cv. Money Maker using the RNeasy mini kit (Qiagen Inc., Valencia, CA). Using primers 5′ TTAAGC AAGTTCTGTGAG 3′ and 5′ ATGTCTAAGGTTAAGCTC 3′ specific to the nucleoprotein (N) gene of TSWV, the N gene was amplified by RT-PCR (2). A 777-bp product of the expected size was obtained from symptomatic plants, whereas no amplification was obtained from noninfected tomato. The PCR product was cloned into pGEM-T Easy (Promega, Madison, WI) and sequenced. A search of GenBank revealed a sequence identity of 95 to 99% with the N genes of known TSWV isolates. To our knowledge, this is the first report TSWV infection of tomato in Kenya. Considering its wide host range, future surveys should be directed toward estimating its incidence in tomato and other TSWV-susceptible crops, such as Irish potatoes, pepper, peanut (groundnut), beans, and a wide variety of ornamental cut flowers in Kenya. References: (1) J. W. Moyer. Tospoviruses (Bunyaviridae). Pages 1803–1807 in: Encyclopedia of Virology. A. Granoff and R. G. Webster, eds. Academic Press, San Diego, CA, 1999. (2) Jain et al. Plant Dis. 82:900, 1998.


Sign in / Sign up

Export Citation Format

Share Document