scholarly journals First Report of Groundnut bud necrosis virus in Iran

Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 561-561 ◽  
Author(s):  
A. R. Golnaraghi ◽  
R. Pourrahim ◽  
N. Shahraeen ◽  
Sh. Farzadfar

During the summer of 2001, mosaic, mottle, ring mosaic, stunting, and bud necrosis were observed in peanut fields (Arachis hypogaea cv. Gilan) in the Golestan Province of Iran. Mechanical inoculation of these samples caused necrotic local lesions on Vigna unguiculata cv. Mashad, necrosis on Nicotiana benthamiana and N. rustica, and mosaic followed by bud necrosis on Arachis hypogaea cv. NC2. Using triple-antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) and polyclonal (As) combined with monoclonal antibodies (MAbs) produced by DSMZ (Braunschweig, Germany), the samples were tested for presence of impatiens necrotic spot virus (INSV) (As-0115, MAb-0117-5E4), tomato spotted wilt virus (TSWV) (As-0105, MAb-0116-2B6, MAb-0106-4F2), and groundnut bud necrosis virus (GBNV) (As-0118, MAb-0226-1B4). The samples also were checked by TSWV polyclonal antibody (As-0526, As-0580, DSMZ). ELISA results showed leaf samples and inoculated indicator plants reacted positively to GBNV antibodies. Also a weak reaction was observed with TSWV-polyclonal antibody. However no reaction was detected using the INSV and TSWV-MAbs. GBNV is a member of the Tospovirus genus and has serological relationship with TSWV (1). To our knowledge, this is the first report of GBNV occurrence in Iran. Reference: (1) C. Heinze et al. Phytopathology 85:683-690, 1995.

Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1286-1286 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Ghorbani ◽  
Sh. Farzadfar

During the summer of 2000, severe stunting, mosaic, bud necrosis, and chlorosis symptoms were observed on peanut (Arachis hypogaea cv. Gilan) plants growing in fields in the Golestan Province of Iran. Leaf extracts of peanut plants were infective (mechanical inoculation) causing necrotic local lesions on Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Phaseolus vulgaris cv. Talash, Vicia faba, and Vigna unguiculata cv. Mashad; systemic chlorotic spots were followed by systemic necrosis in Datura stramonium, D. metel, and Nicotiana rustica; chlorotic and necrotic spots were followed by top necrosis in Glycine max. About 2 weeks after inoculation, the chlorosis followed by stunting and bud necrosis observed in the field were reproduced in A. hypogaea cv. Gilan. Tomato spotted wilt virus (TSWV) was detected in the original peanut plants and in plant species that developed symptoms after inoculation with extracts from peanut plants, when analyzed by double-antibody sandwich enzyme-linked immunosorbent assay using TSWV-specific antisera (polyclonal antibody As-0526 and As-0580, DSMZ, Braunschweig, Germany). TSWV is one of the most important viruses in the world (2) and has been reported on potato (3) and tomato (1) in Iran. To our knowledge, this is the first report of TSWV infection of peanut in Iran. References: (1) K. Bananej et al. Iran. J. Plant Pathol. 34:30, 1998. (2) R. A. Mumford et al. Ann. Appl. Biol. 128:159, 1996. (3) R. Pourrahim et al. Plant Dis. 85:442, 2001.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1152-1152 ◽  
Author(s):  
G. E. Holcomb ◽  
R. A. Valverde

Melampodium divaricatum (Rich. ex Pers.) DC. (=M. paludosum H.B.K.), a member of the family Asteraceae and native to South America, is a recent introduction for use as a summer bedding ornamental. In September 1999, melampodium plants in multiple Baton Rouge landscapes were observed with signs of powdery mildew and symptoms of a virus-like disease. Powdery mildew spread throughout one of the plantings by late November and infected flowers and leaves. An Oidium species sporulated on both leaf surfaces but was more common on the adaxial surface. Ellipsoid conidia were produced in chains, lacked fibrosin bodies, and averaged 31 × 19 µm. No sexual stage was observed. Eight of 63 plants (cv. Derby) in one of the plantings showed virus disease symptoms that included severe leaf mosaic, leaf malformation, and stunting. Leaves from infected plants were used to sap inoculate seedling plants of melampodium and Nicotiana benthamiana. Melampodium seedlings developed typical mosaic symptoms after 48 to 56 days. N. benthamiana developed severe chlorosis and mosaic, then wilted and died after 14 days. Noninoculated plants of both species remained healthy. The virus in both plant species was identified as Tomato spotted wilt virus (TSWV) by enzyme-linked immunosorbent assay (ELISA) (Agdia, Elkhart, IN). ELISA tests for presence of Impatiens necrotic spot virus were negative. This is the first report of powdery mildew and TSWV on M. divaricatum.


Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1559-1559 ◽  
Author(s):  
Basavaraj ◽  
A. Kumar ◽  
S. K. Holkar ◽  
R. K. Jain ◽  
Bikash Mandal

Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 150-150 ◽  
Author(s):  
I. Stanković ◽  
A. Bulajić ◽  
A. Vučurović ◽  
D. Ristić ◽  
K. Milojević ◽  
...  

In July 2011, greenhouse-grown chrysanthemum hybrid plants (Chrysanthemum × morifolium) with symptoms resembling those associated with tospoviruses were observed in the Kupusina locality (West Bačka District, Serbia). Disease incidence was estimated at 40%. Symptomatic plants with chlorotic ring spots and line patterns were sampled and tested by double antibody sandwich (DAS)-ELISA using polyclonal antisera (Bioreba AG, Reinach, Switzerland) against the two of the most devastating tospoviruses in the greenhouse floriculture industry: Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (2). Commercial positive and negative controls and extracts from healthy chrysanthemum tissue were included in each ELISA. TSWV was detected serologically in 16 of 20 chrysanthemum samples and all tested samples were negative for INSV. The virus was mechanically transmitted from ELISA-positive chrysanthemum samples to five plants each of both Petunia × hybrida and Nicotiana tabacum ‘Samsun’ using chilled 0.01 M phosphate buffer (pH 7) containing 0.1% sodium sulfite. Inoculated plants produced local necrotic spots and systemic chlorotic/necrotic concentric rings, consistent with symptoms caused by TSWV (1). The presence of TSWV in ELISA-positive chrysanthemum plants and N. tabacum‘Samsun’ was further confirmed by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primers TSWVCP-f/TSWVCP-r specific to the nucleocapsid protein (N) gene (4). A Serbian isolate of TSWV from tobacco (GenBank Accession No. GQ373173) and RNA extracted from a healthy chrysanthemum plant were used as positive and negative controls, respectively. An amplicon of the correct predicted size (738-bp) was obtained from each of the plants assayed, and that derived from chrysanthemum isolate 529-11 was purified (QIAqick PCR Purification Kit, Qiagen) and sequenced (JQ692106). Sequence analysis of the partial N gene, conducted with MEGA5 software, revealed the highest nucleotide identity of 99.6% (99% amino acid identity) with 12 TSWV isolates deposited in GenBank originating from different hosts from Italy (HQ830186-87, DQ431237-38, DQ398945), Montenegro (GU355939-40, GU339506, GU339508), France (FR693055-56), and the Czech Republic (AJ296599). The consensus maximum parsimony tree obtained on a 705-bp partial N gene sequence of TSWV isolates available in GenBank revealed that Serbian TSWV isolate 529-11 from chrysanthemum was clustered in the European subpopulation 2, while the Serbian isolates from tomato (GU369723) and tobacco (GQ373172-73 and GQ355467) were clustered in the European subpopulation 1 denoted previously (3). The distribution of TSWV in commercial chrysanthemum crops is wide (2). To our knowledge, this is the first report of TSWV infecting chrysanthemum in Serbia. Since chrysanthemum popularity and returns have been rising rapidly, the presence of TSWV may significantly reduce quality of crops in Serbia. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) Daughtrey et al. Plant Dis. 81:1220, 1997. (3) I. Stanković et al. Acta Virol. 55:337, 2011. (4) A. Vučurović et al. Eur. J. Plant Pathol. 133:935, 2012.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1290-1290 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Ghorbani ◽  
Sh. Farzadfar

During the summers of 1999 and 2000, 3,110 soybean (Glycine max) leaf samples were randomly collected from soybean fields in the Ardebil, Goletan, Khuzestan, Lorestan, and Mazandaran provinces of Iran. Tomato spotted wilt virus (TSWV) was detected in leaf samples by TSWV-specific polyclonal antibody (As-0526 and As-0580, DSMZ, Braunschweig, Germany) in double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Mechanical inoculation of 26 plant species (10 plants per species) and cultivars with extracts of positive leaf samples produced necrotic local lesions in Beta vulgaris, Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Phaseolus vulgaris cv. Talash, Vicia faba, and Vigna unguiculata cv. Mashad; produced systemic chlorosis followed by necrosis in Datura stramonium, D. metel, Nicotiana rustica, N. tabacum cv. Samsun, N. glutinosa, N. bentamiana, and Glycine max cv. Hill; and produced chlorosis, stunting, and bud necrosis in Arachis hypogaea (peanut). Plants developing these symptoms following mechanical inoculation with extracts from original soybean leaves were positive in ELISA for TSWV. ELISA results indicate that the overall incidence of TSWV on soybean in the five provinces was 5.4%. TSWV has been reported in potato (2) and tomato (1) from Iran, but to our knowledge, this is the first report of the occurrence of TSWV on soybean in Iran. References: (1) K. Bananej et al. Iran. J. Plant Pathol. 34:30, 1998. (2) R. Pourrahim et al. Plant Dis. 85:442, 2001.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae and has a wide host range including important crops such as tomato, pepper, tobacco, peanut, and onion. In areas of Georgia, soybean (Glycine max) is double cropped between two onion crops and as a rotation crop with peanuts. Soybeans do not show any TSWV symptoms, and therefore, have not been tested on a large scale for the virus. However, because symptomless weed and crop plants provide a reservoir for TSWV and the thrips vectors (2), a survey was conducted during the summer of 2005 to evaluate the occurrence of TSWV in soybean. The survey took place in seven counties in southern Georgia with field sizes ranging between 0.4 and 20 ha (1 and 50 acres). Soybean cultivars included Haskell, DP7220, DP6770, Pioneer 97B52, and Vigoro V622NRR. Of 848 randomly selected plants tested using the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN), 6.6% tested positive for TSWV. Plants testing positive ranged from seedling to the pod-setting stages. Leaves and roots of several plants tested positive, indicating a systemic infection. Soybean plants testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation, and the blotted samples were processed according to the manufacturer's protocol. Reverse transcription-polymerase chain reaction using punch-outs from the FTA cards and TSWV nucleocapsid gene specific forward and reverse primers (5′-TTAAGCAAGTTCTGTGAG-3′ and 5′-ATGTCTAAGGTTAAGCTC-3′), respectively (4), confirmed the identity of TSWV. TSWV has been found in soybean in other parts of the world (1) but has only been reported in the United States in a survey from Tennessee (3). To our knowledge, this is the first report of the occurrence of TSWV in soybean in Georgia. The role soybean plays as a reservoir or green bridge for thrips and TSWV is currently unknown. References: (1) A. R. Golnaraghi et al. Plant Dis. 88:1069, 2004. (2) R. L. Groves et al. Phytopathology 91:891, 2001. (3) B. S. Kennedy and B. B. Reddick. Soybean Genet. Newsl. 22:197, 1995. (4) H. R. Pappu et al. Tob. Sci. 40:74, 1996.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Ghotbi ◽  
N. Shahraeen ◽  
S. Winter

Damage to agricultural crops by tospoviruses has occurred sporadically in Iran in the past; however, since 2000, outbreaks of tospoviruses have been recorded every year. The most affected ornamental crops were surveyed in two main cultivation areas in provinces of Markazi (Mahallat) and Tehran in 2000-01 and 2001-02. A few weed species also were collected. In all, 513 samples (with or without any conspicuous virus symptoms) were collected and analyzed by double- and triple-antibody sandwich enzyme-linked immunosorbent assay (ELISA) with polyclonal antibodies to Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), and Tomato Varamin virus (ToVV), a new Tospovirus sp. from Iran. These viruses frequently were detected in samples of many different ornamentals and often in mixed infections, whereas Iris yellow spot virus (IYSV) was detected in only four samples. ToVV also was found in weeds growing in Chrysanthemum fields and in a Cuscuta sp. Applying double-antibody sandwich ELISA, no positive reactions were found with Tomato chlorotic spot virus (TCSV). Of the total of 513 samples tested, 345 samples did not react with any Tospovirus antisera. In Tehran, INSV was identified in 21 samples (10%), IYSV in 4 samples (2%), TSWV in 16 samples (8%), and ToVV in 22 samples (11%). In Markazi province, INSV was identified in 24 samples (8%), IYSV in 1 sample (0.5%), TSWV in 40 samples (13%), and ToVV in 36 samples (12%). ToVV was found to prevail in Tehran province and TSWV in Markazi. Thrips spp. present at the plant sampling sites also were collected and identified.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 525-525 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos ◽  
S. M. Olson

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae. It has many important crop hosts including tomato, pepper, tobacco, peanut, and onion. In Georgia, Vidalia onions (Allium cepa), a close relative of leek, can be infected by TSWV and Iris yellow spot virus (IYSV), which is another thrips-vectored tospovirus (2). For this reason, samples of leek transplants with virus-like symptoms in one field at the border of Georgia and Florida were tested for the presence of TSWV and IYSV. The transplants had been grown from seed in a greenhouse at the same location. The sampled plants exhibited extended bleaching of leaf tips and necrotic lesions. These symptoms were also seen on onion plants infected with TSWV and IYSV. The only natural infections of leek with IYSV have been reported thus far only from Reunion Island (4) and Slovenia (1), but to our knowledge, TSWV has not been reported as a pathogen of leek. Green tissue near the necrotic lesions and bleached tips of one symptomatic leaf per plant was sampled and analyzed using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN). Of 90 plants tested, eight were positive for TSWV and none were positive for IYSV. Leek samples testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation and then processed according to the manufacturer's protocol. Punch-outs from the FTA cards were used for reverse transcription polymerase chain reaction (RT-PCR) with the TSWV-specific forward primer (5′-TTAAGCAAGTTCTGTGAG-3′) and reverse primer (5′-ATGTCTAAGGTTAAGCTC-3′) (3) to confirm the identity of TSWV. The primers are specific to the viral nucleocapsid gene. An amplicon of the expected size (774 bp) was produced from TSWV ELISA-positive leek plants, but not from healthy controls. TSWV has been found in many plants worldwide, but to our knowledge this is the first report of TSWV infecting leek. The effect that TSWV has on leek production is currently unknown. References: (1) D. A. Benson et al. Nucleic Acids Res. 1:32 (Database issue):D23-6, 2004. (2) S. W. Mullis et al. Plant Dis. 88:1285, 2004. (3) H. R. Pappu et al. Tob. Sci. 40:74, 1996. (4) I. Robène-Soustrade et al. Online publication. New Dis. Rep. 11, 2005.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 442-442 ◽  
Author(s):  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. A. Moini ◽  
N. Shahraeen ◽  
A. Ahoonmanesh

Severe leaf and stem necrosis before flowering was observed in potato (Solanum tuberosum) fields of Firouzkoh Province, Iran, during the summer of 1998. Infected plants died before the end of the growing season. Necrosis was more severe in cv. Agria than in cvs. Ajaxs and Arinda. A high population of Thrips tabaci was observed in August and September. Tomato spotted wilt virus (TSWV) (1) was detected in affected potatoes by using specific TSWV-IgG (from Bioreba) in double-antibody sandwich enzyme linked immunosorbent assay and by indicator plant reactions. Mechanical inoculation of indicator plants with leaf extracts of symptomatic potatoes produce necrotic local lesions in Chenopodium quinoa, C. amaranticolor, Gomphrena globosa, Vicia faba, Vigna sinensis, Phaseolus aureus var. Gohar, P. vulgaris, and Petunia hybrida. The virus caused systemic necrosis in Capsicum frutescens, Datura stramonium, D. metel, Nicotiana glutinosa, N. rustica, and Trapaeolum majus, preceded by systemic chlorotic spots. TSWV was reported from ornamental crops in Tehran and Absard areas near to Firouzkoh province (2), but this is the first report of TSWV occurrence on potatoes in Iran. References: (1) T. S. Ie. Descriptions of Plant Viruses. No. 39, 1970. (2) A. A. Moeini, et al. Iran. J. Plant Pathol. (In press.)


Sign in / Sign up

Export Citation Format

Share Document