Plant Pathogens at Work: Improving Weed Control Efficacy

2007 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
C. B. Yandoc-Ables ◽  
E. N. Rosskopf ◽  
R. Charudattan

Research in the area of the use of plant pathogens as biological control agents for weeds is conducted using either the classical or the bioherbicidal approach. In the classical approach, a pathogen is typically imported from a foreign location to control an introduced weed target. In the inundative or bioherbicide strategy, an indigenous pathogen is cultured to produce large quantities of inoculum that are applied at high rates to the entire target weed population. Research on the development of plant pathogens for biological control using the inundative or bioherbicide approach has moved from determining host range and demonstrating pathogenicity to investigating systems that enhance the efficacy of these agents. Accepted for publication 9 April 2007. Published 22 August 2007.

2007 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
C. B. Yandoc-Ables ◽  
E. N. Rosskopf ◽  
R. Charudattan

Weed biological control using plant pathogens has been successfully implemented for a number of important invasive weeds. Both the classical and bioherbicide approaches have shown promise depending on the characteristics of the target weed. Bioherbicidal activity can be improved with research on formulation and application technology. Other approaches that have improved weed control efficacy for both classical biological control agents and bioherbicides include using a combination of pathogens and insects. Accepted for publication 9 April 2007. Published 22 August 2007.


1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


2019 ◽  
pp. 1-20
Author(s):  
Charles Oluwaseun Adetunji ◽  
Deepak Kumar ◽  
Meenakshi Raina ◽  
Olawale Arogundade ◽  
Neera Bhalla Sarin

Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 653
Author(s):  
Susan A. Wineriter-Wright ◽  
Melissa C. Smith ◽  
Mark A. Metz ◽  
Jeffrey R. Makinson ◽  
Bradley T. Brown ◽  
...  

Rhodomyrtus tomentosa is a perennial shrub native to Southeast Asia and is invasive in South Florida and Hawai’i, USA. During surveys of R. tomentosa in Hong Kong from 2013–2018 for potential biological control agents, we collected larvae of the stem borer, Casmara subagronoma. Larvae were shipped in stems to a USDA-ARS quarantine facility where they were reared and subjected to biology studies and preliminary host range examinations. Casmara subagronoma is the most recent Casmara species to be described from males collected in Vietnam and Indonesia. Because the original species description was based on only two male specimens, we also provide a detailed description of the female, egg, larva, and pupa. Finally, we conducted preliminary host range trials utilizing Myrtus communis, Myrcianthes fragrans, and Camellia sinensis. Casmara subagronoma emerged from M. fragrans, a Florida-native shrub, and larvae were able to survive in non-target stems for over a year (>400 days). Based on these findings and difficulty in rearing, we do not believe C. subagronoma is a suitable insect for biological control of R. tomentosa at this time, but may warrant further study. This investigation also illustrates the importance of host surveys for conservation and taxonomic purposes.


BioControl ◽  
2015 ◽  
Vol 60 (6) ◽  
pp. 725-746 ◽  
Author(s):  
Sebastien Massart ◽  
Michele Perazzolli ◽  
Monica Höfte ◽  
Ilaria Pertot ◽  
M. Haïssam Jijakli

2020 ◽  
Vol 13 (1) ◽  
pp. 222-226
Author(s):  
Henny V.G. Makal ◽  
Max M. Ratulangi ◽  
Denny S. Sualang

The objectives of this study are: (1) to inventory Trichoderma spp. in North Minahasa District, South Minahasa District, and Tomohon City-Minahasa District, (2) inventory of Trichoderma spp. in the rhizosphere of cultivated and fallow gardens, and (3) calculate the population density of Trichoderma spp. all soil samples. The scope of this study is the biological control of plant pathogens, induce plant resistance, and biological fertilizer production. Trichoderma isolation spp. has been carried out by dilution method and cultured on PDA + antibiotics. Population density of Trichoderma spp. calculated using the plate calculation method. Identification of this species function based on the color and patterns of sporulation in the colony; hyphae and clamydospores; conidiophores; and phialides and phialospores. Trichoderma species found in North Minahasa District were T. harzianum, T. koningii, and T. viride; in South Minahasa District, T. koningii and T. viride; and in Tomohon City-Minahasa District, T. koningii and T. viride. In fallow gardens were T. harzianum, T. koningii, and T. viride, and in cultivated gardens were T. koningii and T. viride. Population densities of Trichoderma sp. in South Minahasa District, North Minahasa District, and Tomohon City-Minahasa District, respectively 1,363.64, 466.67, and 26.67 CFU / g soil.


Sign in / Sign up

Export Citation Format

Share Document