scholarly journals Geosmithia morbida Found on Weevil Species Stenomimus pallidus in Indiana

2015 ◽  
Vol 16 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jennifer Juzwik ◽  
Mark T. Banik ◽  
Sharon E. Reed ◽  
James T. English ◽  
Matthew D. Ginzel

The canker pathogen Geosmithia morbida is known to be transmitted to Juglans species by the bark beetle Pityophthorus juglandis, and to lead to development of thousand cankers disease. In an Indiana-wide trap-tree survey of ambrosia and bark beetles and weevils colonizing stressed Juglans nigra, G. morbida was detected on three Stenomimus pallidus weevils emerged from two trees on one site. This is the first report of the pathogen in Indiana and the first report of the fungus from an insect species other than P. juglandis. Accepted for publication 22 October 2014. Published 12 January 2015.

2019 ◽  
Vol 20 (3) ◽  
pp. 133-139 ◽  
Author(s):  
Melanie Moore ◽  
Jennifer Juzwik ◽  
Fredric Miller ◽  
Leah Roberts ◽  
Matthew D. Ginzel

Thousand cankers disease is caused by the coalescence of numerous Geosmithia morbida cankers on branches and stems of Juglans species, leading to branch dieback and eventual tree death. The fungus sporulates in galleries of the walnut twig beetle (Pityophthorus juglandis), allowing for acquisition of pathogen propagules and its subsequent transmission to other branches or trees following adult emergence. Recently, G. morbida has been isolated from Xylosandrus crassiusculus and Xyleborinus saxesenii collected in Ohio and Stenomimus pallidus collected in Indiana. These beetles are known to colonize diseased Juglans nigra in these states. In this study, an operational trap survey for ambrosia beetles, bark beetles, and other weevils was conducted in four eastern states, and captured beetles were assayed to detect G. morbida using both culture and PCR-based methods. A new primer pair (GmF3/GmR13), based on the β-tubulin region, was designed for G. morbida DNA detection. The pathogen was detected on 18 insect species using molecular methods, and live cultures were isolated from two species. This is the first report of the pathogen in Illinois and Minnesota.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
L. Montecchio ◽  
M. Faccoli

Thousand cankers disease (TCD) of walnut is responsible for widespread mortality of black walnut (Juglans nigra L.) in the United States since the mid-1990s (2). The disease is caused by the fungus Geosmithia morbida Kolařik (Ascomycota, Hypocreales), vectored by the walnut twig beetle Pityophthorus juglandis Blackman 1928 (Coleoptera, Scolytinae). In September 2013, TDC was observed in northeastern Italy (Bressanvido, Vicenza, 45°39′ N, 11°38′ E) in black walnuts of different ages: ~80-year-old plants growing in a garden and 17-year-old trees belonging to a nearby walnut plantation for timber production. Main symptoms were yellowing, wilting, twig and branch dieback, and a high number of small bark cankers (3). Longitudinal and radial sections collected through the cankers revealed gray to brown discoloration of both phloem and outer bark, and the presence of bark beetle galleries radiating from the mating chamber and developing horizontally (across the wood grain), and vertical (along the grain) larval galleries. Occasionally, discoloration involved the outward xylematic tissues. Fungal fruiting bodies were not found on or near the cankers. Whitish mycelium, sometimes producing verticillate conidiophores, was frequently detected inside galleries. A number of 1- to 3-cm diameter twigs showing cankers up to 2 cm long surrounding bark beetle penetration holes were randomly collected. From samples, emerging beetles were identified as P. juglandis both morphologically (4) and genetically. DNA extraction was carried following a standard salting out protocol. The barcode region of the mitochondrial gene cytochrome oxydase I was then amplified using universal primers (1) and sequenced, obtaining 627 bp. BLAST analysis showed 100% identity to P. juglandis. Sequences were finally deposited in the BoldSystem database (GenBank Accession No. KF725084). From the necrotic margin of six cankers previously surface-sterilized with 3% sodium hypochlorite, two 3-mm-wide chips per canker were placed on potato dextrose agar and incubated at 23 ± 1°C in the dark. Among a variety of microorganisms, slow growing lobate, plane, yellowish-ochre colonies with hyaline mycelium appeared in 6 days. After subculturing to the same medium, growing features, mycelium, conidiophores, and conidia with morphological characteristics matching Kolařik's description of G. morbida (2) were observed. Same result was obtained culturing the mycelium growing inside the galleries. The ITS region of rDNA was amplified using ITS1F and ITS4 primers and sequenced, obtaining 597 bp. BLAST analysis showed 100% identity to G. morbida strain U173 (HF546283.1) for 558 bp. To our knowledge, this is the first record of TCD and P. juglandis to Europe, where walnut species (mainly J. regia, J. nigra, and their hybrids) are intensively cultivated for timber production. This finding is therefore of particular importance. An intensive survey of the disease is suggested, both to assess fungus/beetle presence and to verify possible pathways of introduction, likely associated to importation of infested/infected timber from native Nearctic regions. Voucher specimens are stored in the TeSAF herbarium (fungus) and in the DAFNAE insect collection. References: (1) O. Folmer et al. Mol. Marine Biol. Biotechnol. 3:294, 1994. (2) M. Kolařik et al. Mycologia 103:325, 2011. (3) C. Nischwitz and M. Murray, Utah Pests Fact Sheet, PRP-015pr, 2011. (4) S. L. Wood. Great Basin Naturalist Memoirs 6:1123, 1982.


2013 ◽  
Vol 14 (1) ◽  
pp. 38 ◽  
Author(s):  
Maryna Serdani ◽  
Joshua J. Vlach ◽  
Kelly L. Wallis ◽  
Marcelo Zerillo ◽  
Tim McCleary ◽  
...  

To our knowledge, this is the first report of natural infection of butternut by G. morbida and P. juglandis. Accepted for publication 15 October 2013. Published 18 October 2013.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1445-1445 ◽  
Author(s):  
L. Montecchio ◽  
G. Fanchin ◽  
M. Simonato ◽  
M. Faccoli

Thousand cankers disease (TCD) is a disease complex caused by the fungus Geosmithia morbida Kolařik (Ascomycota, Hypocreales) and its vector Pityophthorus juglandis Blackman 1928 (Coleoptera, Scolytinae; walnut twig beetle, WTB). Since the mid-1990s, the disease was responsible for widespread mortality of many walnut species in the United States (4). After the first detection of TCD on black walnut (Juglans nigra L.) in Italy (3), an extensive survey was activated in cooperation with the Regional Phytosanitary Service. In May 2014, early TCD symptoms (4) were observed on English walnuts (J. regia L.). Canopies showed yellowing, wilting, and dieback of the youngest twigs, and a number of small brown cankers. Longitudinal and radial sections sampled through the cankers revealed gray to brown discoloration of both phloem and bark, and the presence of bark beetle galleries. Xylem discoloration was never observed. From one ~20-year-old European walnut growing in a garden neighboring an infected black walnut plantation (Santorso, Vicenza, 45°72′ N, 11°40′ E), a number of 1- to 2.5-cm-diameter twigs showing cankers up to 2 cm long surrounding bark beetle holes were collected. Whitish mycelium producing verticillate conidiophores was detected inside the insect galleries. From the necrotic margin of eight cankers previously surface-sterilized with 3% sodium hypochlorite, two 4-mm-wide chips per canker were placed on potato dextrose agar and incubated at 28 ± 1°C in the dark. Slow growing lobate, plane, yellowish-ocher colonies with hyaline mycelium appeared in 5 days. After subculturing to the same medium, growth features, mycelium, conidiophores, and conidia with morphological characteristics matching Kolarik's description of G. morbida (2) were observed. The ITS region of rDNA from the fungus strain LM14GM001-JR was amplified by using ITS1F and ITS4 primers and sequenced obtaining a 387-bp gene fragment. BLAST analysis showed 99% identity to the G. morbida strain U19 (GenBank Accession No. KF808301.1) for 384 bp, and 99% identity to the G. morbida strain LM13GM001-JN previously isolated from J. nigra in Italy (3). From the same samples, two emerging beetles were collected and identified as P. juglandis both morphologically (5) and genetically by DNA extraction following a standard salting out protocol. The barcode region of the mitochondrial gene cytochrome oxidase I was then amplified by using universal primers (1) and sequenced to obtain a 614-bp fragment of the gene. BLAST analysis showed 100% identity to P. juglandis based on comparison with KJ451422. A few other English walnuts with both the fungus and WTB were also found close to other infected black walnut plantations. To our knowledge, this is the first record of G. morbida and P. juglandis on J. regia in Europe, where the tree is cultivated for both fruit and timber production, as well as a traditional landscape tree. Voucher specimens are stored in the TeSAF herbarium and in the DAFNAE insect collection. References: (1) O. Folmer et al. Mol. Marine Biol. Biotechnol. 3:294, 1994. (2) M. Kolarik et al. Mycologia 103:325, 2011. (3) L. Montecchio and M. Faccoli. Plant Dis. 98:696, 2014. (4) S. J. Seybold et al. USDA Forest Service, NA-PR-02-10, 2013. (5) S. L. Wood. Great Basin Naturalist Memoirs 6:1123, 1982.


2012 ◽  
Vol 13 (1) ◽  
pp. 11 ◽  
Author(s):  
Emily Freeland ◽  
Whitney Cranshaw ◽  
Ned Tisserat

Thousand cankers disease of black walnut (Juglans nigra) is the result of aggressive feeding by the walnut twig beetle (Pityophthorus juglandis) and extensive cankering around beetle galleries caused by the fungus Geosmithia morbida. We developed a consistent, reproducible inoculation technique to screen black walnut trees for their reaction to canker development following inoculation with G. morbida. Canker areas in one-year-old trees were not affected by the location on the stem that inoculations were made. Differences in aggressiveness of G. morbida isolates, representing different rDNA ITS haplotype groups, to black walnut were observed in some experiments. However, these differences were small and evidence indicates that a single, highly aggressive haplotype is not responsible for the current TCD epidemic. Cankers formed in black walnut at all temperatures tested, but they were consistently smaller at 32/20°C day/night temperatures compared to 25/20°C. Although G. morbida is thermotolerant, higher temperatures may not enhance canker development. Accepted for publication 1 May 2012. Published 18 June 2012.


2019 ◽  
Vol 48 (4) ◽  
pp. 882-893 ◽  
Author(s):  
Karandeep Chahal ◽  
Romina Gazis ◽  
William Klingeman ◽  
Denita Hadziabdic ◽  
Paris Lambdin ◽  
...  

Abstract Thousand cankers disease (TCD) results from the combined activity of the fungal pathogen, Geosmithia morbida Kolařík, Freeland, Utley, and Tisserat and its principle vector, Pityophthorus juglandis (Blackman) (Coleoptera: Curculionidae: Scolytinae) in Juglans L. spp. and Pterocarya Kunth spp. host plants. TCD has been reported from the eastern and western United States. To evaluate potential for other beetle species to vector the fungus in east Tennessee, specimens were collected using ethanol-baited traps that were suspended beneath crowns of TCD-symptomatic trees. Associations of G. morbida with insect species collected in traps were assessed in an unsuccessful, preliminary culture-based fungal assay, and then with a molecular-based detection method. For culture-based assays, rinsate from washed, individual insects was plated on nutrient media and growing colonies were subcultured to obtain axenic G. morbida cultures for identification. For the molecular-based method, G. morbida presence was detected by amplifying the previously developed, species-specific microsatellite locus GS004. Capillary electrophoresis was used to detect the amplified amplicons and representative reactions were validated using Sanger sequencing. Eleven beetle species were found to carry G. morbida, including Cnestus mutilatus (Blandford), Dryoxylon onoharaensum (Murayama), Hylocurus rudis (LeConte), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xylosandrus crassiusculus (Motschulsky), Xylosandrus germanus (Blandford) (all Coleoptera: Curculionidae: Scolytinae), Stenomimus pallidus (Boheman) (Coleoptera: Curculionidae: Cossoninae), Oxoplatypus quadridentatus (Olivier) (Coleoptera: Curculionidae: Platypodinae), and Xylops basilaris (Say) (Coleoptera: Bostrichidae). These findings raise concerns that alternative subcortical insect species that already occur within quarantined habitats can sustain incidence of introduced G. morbida and contribute to spread within the native range of black walnut, Juglans nigra L., in the eastern United States.


2021 ◽  
Vol 4 ◽  
Author(s):  
Geoffrey M. Williams ◽  
Matthew D. Ginzel

Bark beetles vector symbiotic fungi and the success of these mutualisms may be limited by competition from other microbes. The outcome of fungal competition is strongly influenced by the physical and chemical conditions of the wood they inhabit. These conditions are in turn subject to climatic variation. In particular, wood moisture content (MC) influences fungal competition and, therefore, could help determine environmental suitability for thousand cankers disease (TCD) caused by Geosmithia morbida and its vector Pityophthorus juglandis. We conducted competition experiments in Juglans nigra wood that was naturally or artificially colonized by G. morbida and other fungi over a range of wood MC expected across prevailing United States climatic conditions. G. morbida outcompeted antagonistic fungi Clonostachys and Trichoderma spp. at <5% equilibrium moisture content. Aspergillus spp. outcompeted G. morbida at low moisture in wood from Indiana. We fit a logistic regression model to results of the competition experiments to predict survival of G. morbida across the United States. Expected survival of G. morbida was highest in historical TCD epicenters and accounted for the low incidence and severity of TCD in the eastern United States. Our results also predict that under future climate scenarios, the area impacted by TCD will expand into the native range of J. nigra. Given its role in emergent forest health threats, climate change should be a key consideration in the assessment of risks to hardwood resources.


2013 ◽  
Vol 60 (2) ◽  
pp. 75-87 ◽  
Author(s):  
Denita Hadziabdic ◽  
Lisa M. Vito ◽  
Mark T. Windham ◽  
Jay W. Pscheidt ◽  
Robert N. Trigiano ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1238-1238 ◽  
Author(s):  
J. Juzwik ◽  
M. McDermott-Kubeczko ◽  
T. J. Stewart ◽  
M. D. Ginzel

Sign in / Sign up

Export Citation Format

Share Document