scholarly journals Mutations in ORP1 Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae

2018 ◽  
Vol 108 (12) ◽  
pp. 1412-1419 ◽  
Author(s):  
Jianqiang Miao ◽  
Yuandong Chi ◽  
Dong Lin ◽  
Brett M. Tyler ◽  
Xili Liu

Oxathiapiprolin is a novel fungicide that was recently registered in a number of countries to control plant-pathogenic oomycetes such as Phytophthora capsici. In our previous study, point mutations G770V and G839W in oxysterol binding protein-related protein 1 (ORP1) were detected in oxathiapiprolin-resistant P. capsici isolates (PcORP1). Here, we used the CRISPR/Cas9 system to verify the effects of these two point mutations on P. capsici phenotypes. Transformants containing heterozygous G770V and G839W mutations in PcORP1 showed high levels of oxathiapiprolin resistance. The G770V transformants showed otherwise similar phenotypes compared with the wild-type isolate BYA5, including sporangia and zoospore production, cyst germination, and pathogenicity. However, two independent transformants with heterozygous G839W mutations in PcORP1 could not produce sporangia. Three transformants with an unexpected point mutation in PcORP1 (ΔN837) showed high oxathiapiprolin resistance, and either similar or significantly reduced fitness compared with BYA5. The same deletion (ΔN837) was confirmed to confer oxathiapiprolin resistance in P. sojae by using CRISPR/Cas9. These homozygous P. sojae mutants also showed either similar or strongly reduced fitness compared with the wild-type parent isolate P6497. These results improve our understanding of oxathiapiprolin resistance in Phytophthora spp., and will be useful for the development of novel oxysterol-binding protein homolog inhibitor fungicides.

2021 ◽  
Author(s):  
Weizhen Wang ◽  
Fan Zhang ◽  
Sicong Zhang ◽  
Zhaolin Xue ◽  
Linfang Xie ◽  
...  

The de novo biosynthesis of sterols is critical for eukaryotes, however, some organisms lack this pathway including most oomycetes. Phytophthora spp. are sterol auxotroph but remarkably, have retained a few genes encoding enzymes in the sterol biosynthesis pathway. Here we investigated the function of PcDHCR7, a gene in Phytophthora capsici predicted to encode the Δ7-sterol reductase. When expressed in Saccharomyces cerevisiae, PcDHCR7 showed a Δ7-sterol reductase activity. Knocking out PcDHCR7 in P. capsici resulted in loss of the capacity to transform ergosterol into brassicasterol, which means PcDHCR7 has a Δ7-sterol reductase activity in P. capsici itself. This enables P. capsici to transform sterols recruited from the environment for better use. Biological characteristics were compared between wild-type isolate and PcDHCR7 knock-out transformants. The results indicated that PcDHCR7 plays a key role in mycelium development and pathogenicity of zoospores in P. capsici.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Cristina M. Dorobantu ◽  
Lucian Albulescu ◽  
Heyrhyoung Lyoo ◽  
Mirjam van Kampen ◽  
Raffaele De Francesco ◽  
...  

ABSTRACT Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses. Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate “replication organelles” (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to generate unique, membranous “replication organelles” (ROs) where viral genome replication takes place. Hepatitis C virus, encephalomyocarditis virus (EMCV), and enteroviruses have convergently evolved to hijack host phosphatidylinositol 4-kinases (PI4Ks), which produce PI4P lipids, to recruit oxysterol-binding protein (OSBP), a PI4P-binding protein that shuttles cholesterol to ROs. Consistent with the proposed coupling between PI4K and OSBP, enterovirus mutants resistant to PI4KB inhibitors are also resistant to OSBP inhibitors. Here, we show that EMCV can replicate without accumulating PI4P/cholesterol at ROs, by acquiring point mutations in nonstructural protein 3A. Remarkably, the mutations conferred resistance to PI4K but not OSBP inhibitors, thereby uncoupling the levels of dependency of EMCV RNA replication on PI4K and OSBP. This work may contribute to a deeper understanding of the roles of PI4K/PI4P and OSBP/cholesterol in membrane modifications induced by positive-strand RNA viruses.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1535-1541 ◽  
Author(s):  
Xiao Hong Lu ◽  
Mary K. Hausbeck ◽  
Xi Li Liu ◽  
Jianjun J. Hao

Crown, root, and fruit rot caused by Phytophthora capsici is an increasing problem for vegetable growers in Michigan and the United States. The newly registered fungicide fluopicolide is effective to limit crop loss but the potential for P. capsici to develop resistance is not well known. A laboratory study assessed the risk of P. capsici developing resistance to fluopicolide. Baseline sensitivity to fluopicolide was determined using 126 P. capsici Michigan isolates. Values of effective concentrations for 50% inhibition of mycelial growth ranged from 0.08 to 0.24 μg/ml and were distributed as a unimodal curve, indicating that all isolates were sensitive to fluopicolide. Mutants resistant to fluopicolide were obtained from five isolates by screening zoospores on fluopicolide-amended (5 μg/ml) media at a mutation frequency above 1.0 × 10–7. The mutant isolates were clustered with either intermediate (resistance factor [RF] = 3.53 to 77.91) or high (RF = 2481.40 to 7034.79) resistance. Resistance was stable through 10 mycelial transfers on fungicide-free medium. All resistant mutants showed similar fitness in zoospore production, cyst germination, and virulence compared with their sensitive parents, with few exceptions. No cross-resistance was detected between fluopicolide and five other fungicides. There could be a moderately high risk of field populations of P. capsici developing resistance to fluopicolide, and populations should be monitored.


1989 ◽  
Vol 264 (28) ◽  
pp. 16798-16803
Author(s):  
P A Dawson ◽  
N D Ridgway ◽  
C A Slaughter ◽  
M S Brown ◽  
J L Goldstein

Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 667-678
Author(s):  
Mary Lee S Ledbetter ◽  
Rollin D Hotchkiss

ABSTRACT A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.


2021 ◽  
Author(s):  
Myat T. Lin ◽  
Douglas J. Orr ◽  
Dawn Worrall ◽  
Martin A. J. Parry ◽  
Elizabete Carmo‐Silva ◽  
...  

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1503-1512 ◽  
Author(s):  
Roy A Khalaf ◽  
Richard S Zitomer

AbstractWe have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.


1998 ◽  
Vol 42 (1) ◽  
pp. 164-169 ◽  
Author(s):  
A. Nzila-Mounda ◽  
E. K. Mberu ◽  
C. H. Sibley ◽  
C. V. Plowe ◽  
P. A. Winstanley ◽  
...  

ABSTRACT Sixty-nine Kenyan Plasmodium falciparum field isolates were tested in vitro against pyrimethamine (PM), chlorcycloguanil (CCG), sulfadoxine (SD), and dapsone (DDS), and their dihydrofolate reductase (DHFR) genotypes were determined. The in vitro data show that CCG is more potent than PM and that DDS is more potent than SD. DHFR genotype is correlated with PM and CCG drug response. Isolates can be classified into three distinct groups based on their 50% inhibitory concentrations (IC50s) for PM and CCG (P< 0.01) and their DHFR genotypes. The first group consists of wild-type isolates with mean PM and CCG IC50s of 3.71 ± 6.94 and 0.24 ± 0.21 nM, respectively. The second group includes parasites which all have mutations at codon 108 alone or also at codons 51 or 59 and represents one homogeneous group for which 25- and 6-fold increases in PM and CCG IC50s, respectively, are observed. Parasites with mutations at codons 108, 51, and 59 (triple mutants) form a third distinct group for which nine- and eightfold increases in IC50s, respectively, of PM and CCG compared to the second group are observed. Surprisingly, there is a significant decrease (P < 0.01) of SD and DDS susceptibility in these triple mutants. Our data show that more than 92% of Kenyan field isolates have undergone at least one point mutation associated with a decrease in PM activity. These findings are of great concern because they may indicate imminent PM-SD failure, and there is no affordable antimalarial drug to replace PM-SD (Fansidar).


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1345-1353
Author(s):  
Amber K Bowers ◽  
Jennifer A Keller ◽  
Susan K Dutcher

Abstract To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G102 and G112) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.


Sign in / Sign up

Export Citation Format

Share Document