scholarly journals A Backcross Line of Thatcher Wheat with Adult Plant Leaf Rust Resistance Derived from Duster Wheat has Lr46 and Lr77

2019 ◽  
Vol 109 (1) ◽  
pp. 127-132 ◽  
Author(s):  
J. A. Kolmer ◽  
Z. Su ◽  
A. Bernardo ◽  
G. Bai ◽  
S. Chao

The widely grown hard red winter wheat cultivar Duster released in 2006 has remained highly resistant to leaf rust caused by Puccinia triticina in the southern Great Plains of the United States. In contrast, many of the winter wheat cultivars in this region are susceptible to leaf rust. The goal of this study was to identify the number and chromosome location of leaf rust resistance genes in a line of Thatcher*2/Duster wheat that was selected for adult plant leaf rust resistance. The Thatcher*2/Duster line was crossed with Thatcher (Tc) and a recombinant line inbred line (RIL) population was advanced to the F6 generation by single-seed descent. The parents and RIL population were phenotyped for leaf rust resistance in three field plot tests and in an adult plant greenhouse test. Single-nucleotide polymorphism (SNP) markers derived from the Illumina Infinium iSelect 90K wheat SNP array, kompetitive allele-specific polymerase chain reaction assays on chromosome 3BL, and a sequence tagged site (STS) marker on chromosome 1BL were used to construct a genetic map of the RIL population. The STS marker csLV46G22 that is linked with resistance gene Lr46 on chromosome 1BL, and SNP marker IWB10344 that is linked with Lr77 on chromosome 3BL, were significantly associated with lower leaf rust severity. Duster has at least three adult plant resistance genes for leaf rust resistance because it was previously determined to also have the adult plant resistance gene Lr34. Duster is a valuable source of durable leaf rust resistance for hard red winter wheat improvement in the Great Plains region.

2020 ◽  
pp. PHYTO-03-20-007
Author(s):  
J. A. Kolmer ◽  
M. K. Turner ◽  
M. N. Rouse ◽  
J. A. Anderson

AC Taber is a hard red spring wheat cultivar that has had long-lasting resistance to the leaf rust fungus Puccinia triticina. The objective of this study was to determine the chromosome location of the leaf rust resistance genes in AC Taber. The leaf rust-susceptible cultivar Thatcher was crossed with AC Taber to develop an F6 recombinant inbred line (RIL) population. The RILs and parents were evaluated for segregation of leaf rust resistance in five field plot tests and in two seedling tests to race BBBDB of P. triticina. A genetic map of the RIL population was developed using 90,000 single nucleotide polymorphism markers with the Illumina Infinium iSelect 90K wheat bead array. Quantitative trait loci (QTLs) with significant effects for lower leaf rust severity in the field plot tests were found on chromosomes 2BS and 3BS. The same QTLs also had significant effects for lower infection type in seedlings to leaf rust race BBBDB. The gene on 2BS was the adult plant resistance gene Lr13, and the gene on 3BS mapped to the same region as the adult plant resistance gene Lr74 and other QTLs for leaf rust resistance. Kompetitive allele-specific PCR assay markers linked to the 2BS and 3BS regions were developed and should be useful for marker-based selection of these genes.


2012 ◽  
Vol 92 (1) ◽  
pp. 191-193 ◽  
Author(s):  
D. B. Fowler

Fowler, D. B. 2012. Moats hard red winter wheat. Can. J. Plant Sci. 92: 191–193. Moats is a hard red winter wheat (Triticum aestivum L.) that is eligible for grades of the Canada Western Red Winter (CWRW) wheat class. It has excellent stem and leaf rust resistance and higher grain yield and protein concentration than the Central Winter Wheat Cooperative Registration Trial CWRW grain quality check cultivar, CDC Buteo. Its grain yield is similar to the high-yielding Registration Trial check cultivar, CDC Falcon, and lower than Accipiter, which is a more recent high-yielding winter wheat cultivar released in the Canada Western General Purpose wheat class. A suitable combination of grain quality, rust resistance and yield make Moats widely adapted in the winter wheat production area of western Canada.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 943
Author(s):  
Pakeerathan Kandiah ◽  
Mumta Chhetri ◽  
Matthew Hayden ◽  
Michael Ayliffe ◽  
Harbans Bariana ◽  
...  

Among the rust diseases, leaf rust of wheat caused by Puccinia triticina, is the most prevalent worldwide and causes significant yield losses. This study aimed to determine the genomic location of loci that control adult plant resistance (APR) to leaf rust in the pre-Green Revolution landrace accession, Aus27506, from the “Watkins Collection”. An Aus27506/Aus27229-derived F7 recombinant inbred line (RIL) population was screened under field conditions across three cropping seasons and genotyped with the iSelect 90K Infinium SNP bead chip array. One quantitative trait loci (QTL) on each of the chromosomes 1BL, 2B and 2DL explained most of the leaf rust response variation in the RIL population, and these were named QLr.sun-1BL, QLr.sun-2B and QLr.sun-2DL, respectively. QLr.sun-1BL and QLr.sun-2DL were contributed by Aus27506. QLr.sun-1BL is likely Lr46, while QLr.sun-2DL appeared to be a new APR locus. The alternate parent, Aus27229, carried the putatively new APR locus QLr.sun-2B. The comparison of average severities among RILs carrying these QTL in different combinations indicated that QLr.sun-2B does not interact with either of the other two QTL; however, the combination of QLr.sun-1BL and QLr.sun-2DL reduced disease severity significantly. In planta fungal quantification assays validated these results. The RILs carrying QLr.sun-1BL and QLr.sun-2DL did not differ significantly from the parent Aus27506 in terms of resistance. Aus27506 can be used as a source of adult plant leaf rust resistance in breeding programs.


1988 ◽  
Vol 68 (3) ◽  
pp. 633-639 ◽  
Author(s):  
P. L. DYCK ◽  
O. M. LUKOW

Gene Lr29 transferred from Agropyron elongatum to chromosome 7D of wheat and gene LrVPM transferred from VPM1 both segregated as single genes for seedling resistance to leaf rust when backcrossed into common wheat (Triticum aestivum). Although the seedling resistance of the VPM lines was intermediate, their adult plant resistance was excellent. This resistance was not on chromosome 7D. The VPM lines also had seedling and adult plant resistance to stem rust. Resistant backcross lines with either Lr29 or LrVPM had higher kernel protein levels than did susceptible sister lines under both rust and rust-free conditions. Although this higher protein content was associated with weaker dough mixing properties, the remix loaf volume remained constant. Leaf rust infection had a detrimental effect on grain yield and kernel weight and on wheat quality as shown by decreased kernel protein content and farinograph absorption. Dough mixing strength was higher for the rust infected lines than the rust resistant lines.Key words: Triticum aestivum, wheat (spring), leaf rust resistance, protein content, breadmaking quality


Author(s):  
Pakeerathan Kandiah ◽  
Mumta Chhetri ◽  
Matthew Hayden ◽  
Michael Ayliffe ◽  
Harbans Bariana ◽  
...  

Among the rust diseases, leaf rust of wheat caused by Puccinia triticina, is the most prevalent worldwide and causes significant yield losses. This study aimed to determine the genomic location of loci that control adult plant resistance (APR) to leaf rust in the pre-Green Revolution landrace accession, Aus27506, from the ‘Watkins Collection’. An Aus27506/Aus27229-derived F7 recombinant inbred (RIL) population was screened under field conditions across three cropping seasons and genotyped with the iSelect 90K Infinium SNP bead chip array. One QTL on each of chromosomes 1BL, 2B and 2DL explained most of the leaf rust response variation in the RIL population and were named QLr.sun-1BL, QLr.sun-2B and QLr.sun-2DL, respectively. QLr.sun-1BL and QLr.sun-2DL were contributed by Aus27506. QLr.sun-1BL is likely Lr46, while QLr.sun-2DL appeared to be a new APR locus. The alternate parent, Aus27229, carried the putatively new APR locus QLr.sun-2B. Comparisons of average severities among RILs carrying these QTL in different combinations indicated that QLr.sun-2B does not interact with either of the other two QTL; however, the combination of QLr.sun-1BL and QLr.sun-2DL reduced disease severity significantly. In-planta fungal quantification assays validated these results. The RILs carrying QLr.sun-1BL and QLr.sun-2DL did not differ significantly from parent Aus27506 in resistance. Aus27506 can be used as a source of adult plant leaf rust resistance in breeding programs.


2012 ◽  
Vol 92 (1) ◽  
pp. 177-181 ◽  
Author(s):  
R.J. Graf ◽  
J.B. Thomas ◽  
D.A Gaudet ◽  
A. Laroche ◽  
B.L. Beres

Graf, R. J., Thomas, J. B., Gaudet, D. A., Laroche, A. and Beres, B. L. 2012. Broadview hard red winter wheat. Can. J. Plant Sci. 92: 177–181. Broadview is a hard red winter wheat (Triticum aestivum L.) cultivar that is well adapted to the Canadian prairies. Compared with the check cultivars (CDC Falcon, CDC Harrier) in the Western Winter Wheat Cooperative registration trials, Broadview produced grain yield similar to CDC Falcon, the highest yielding check. In the eastern prairie rust area, it yielded 2% and 7% more grain than CDC Falcon and CDC Harrier, respectively. Broadview had good winter survival, early maturity, short straw, good lodging resistance and high test weight. It exhibited very good resistance to stem and leaf rust, and is believed to be the first winter wheat cultivar in North America to deploy the Lr21 leaf rust resistance gene. Broadview is eligible for all grades of the Canada Western General Purpose wheat class.


Sign in / Sign up

Export Citation Format

Share Document