scholarly journals Detection of Citrus Huanglongbing-Associated ‘Candidatus Liberibacter asiaticus’ in Citrus and Diaphorina citri in Pakistan, Seasonal Variability, and Implications for Disease Management

2014 ◽  
Vol 104 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Muhammad F. Razi ◽  
Manjunath L. Keremane ◽  
Chandrika Ramadugu ◽  
Mikeal Roose ◽  
Iqrar A. Khan ◽  
...  

We report the detection of the huanglongbing (HLB)-associated bacterium ‘Candidatus Liberibacter asiaticus’ from both plants and insects in Pakistan and the seasonal variability in the numbers of ‘Ca. L. asiaticus’-positive psyllid vector, Diaphorina citri. Our studies showed that ‘Ca. L. asiaticus’ was detectable from trees in areas with maximum temperatures reaching nearly 50°C (average maximum of 42°C). However, the bacterium was present at very low levels in psyllids both in summer (June to August) and autumn (September to November) in contrast to reports from Florida, where the bacterium was detectable at very high levels during October to November. We hypothesize that hot summer temperatures in Pakistan may interfere with acquisition and replication of ‘Ca. L. asiaticus’ in psyllids and may lead to dead or nontransmissible ‘Ca. L. asiaticus’ in plants. Psyllid counts were very low in both summer and winter, showed a population peak (‘Ca. L. asiaticus’-positive vectors) in spring, and showed a larger peak (‘Ca. L. asiaticus’-free psyllids) in autumn. Natural thermotherapy during hot summers and a low vector population during environmental extremes may have played a major role in long-term survival of the citrus industry in Pakistan. These results may be useful in developing management strategies for U.S. citrus industries in Texas and California.

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 469
Author(s):  
Inaiara de Souza Pacheco ◽  
Diogo Manzano Galdeano ◽  
João Roberto Spotti Lopes ◽  
Marcos Antonio Machado

‘Candidatus Liberibacter asiaticus’ (CLas) is a major causal agent of citrus Huanglongbing (HLB), which is transmitted by Asian citrus psyllid (ACP), Diaphorina citri, causing severe losses in various regions of the world. Vector efficiency is higher when acquisition occurs by ACP immature stages and over longer feeding periods. In this context, our goal was to evaluate the progression of CLas population and infection rate over four ACP generations that continuously developed on infected citrus plants. We showed that the frequency of CLas-positive adult samples increased from 42% in the parental generation to 100% in the fourth generation developing on CLas-infected citrus. The bacterial population in the vector also increased over generations. This information reinforces the importance of HLB management strategies, such as vector control and eradication of diseased citrus trees, to avoid the development of CLas-infected ACP generations with higher bacterial loads and, likely, a higher probability of spreading the pathogen in citrus orchards.


2007 ◽  
Vol 8 (1) ◽  
pp. 53 ◽  
Author(s):  
Xiaoling Deng ◽  
Gen Zhou ◽  
Huaping Li ◽  
Jianchi Chen ◽  
Edwin L. Civerolo

Wampee (Clausena lansium Skeels) is native to southern China and Southeast Asia. Wampee trees are attractive, with grape-like fruits and a muscat taste and are popular in home gardens. Like other members of Rutaceae, wampee has long been suspected to have yellow shoot disease or Huanglongbing (HLB) and Diaphorina citri, the disease vector, was capable of a long-term survival on Wampee. The authors recommend that eradication of wampee trees surrounding citrus orchards should be part of the overall management of citrus HLB. Accepted for publication 20 December 2007. Published 19 April 2007.


2021 ◽  
Author(s):  
Lin Chun-Yi ◽  
Diann Achor ◽  
Amit Levy

Candidatus Liberibacter asiaticus (CLas), the devastating pathogen related to Huanglongbing (HLB), is a phloem-limited, fastidious, insect-borne bacterium. Rapid spread of HLB disease relies on CLas propagates efficiently in its vector, the Asian citrus psyllid, Diaphorina citri, in a circulative manner. Understanding the intracellular lifecycle of CLas in psyllid midgut is fundamental to improve current management strategies. Using a microscopic approach within CLas-infected insect midgut, we observed the entry of CLas into gut cells inside vesicles by endocytosis, termed Liberibacter containing vacuoles (LCVs). Endocytosis is followed by the formation of endoplasmic reticulum-related and replication permissive vacuoles (rLCVs). rLCVs then further develop into bigger double membrane autophagosome-like structure, termed autophagy-related vacuole (aLCV). Vesicles, containing CLas egress from aLCV and fuse with the cell membrane. Immunolocalization studies showed that CLas employs endo/exocytosis-like mechanisms that mediates bacterial invasion and egress. Upregulation of autophagy-related genes indicated subversion of host autophagy by CLas in psyllid vector to promote infection. These results indicate that CLas interacts with host cellular machineries to undergo a multistage intracellular cycle through endocytic, secretory, autophagic and exocytic pathways via complex machineries. Potential tactics for HLB controlling can be made depending on further investigations on the knowledge of the molecular mechanisms of CLas intracellular cycle.


2021 ◽  
Author(s):  
Marcus Vinicius Merfa e Silva ◽  
Eduarda Regina Fischer ◽  
Mariana de Souza e Silva ◽  
Carolina Sardinha Francisco ◽  
Helvécio Coletta-Filho ◽  
...  

Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Ca. Liberibacter americanus’ (CLam) are associated with HLB in Brazil, but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid – ACP) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison to CLas, suggesting a possible role on host-interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides aiming to evaluate the acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5 and Pep6 in artificial diet significantly reduced the acquisition of CLas, while increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas and sweet orange plants stably absorbed and maintained this peptide for as long as three months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xuejin Cui ◽  
Kehong Liu ◽  
Jie Huang ◽  
Shimin Fu ◽  
Qingdong Chen ◽  
...  

Citrus Huanglongbing (HLB) is present in 10 provinces in China and is associated with “Candidatus Liberibacter asiaticus” (CLas), which is transmitted by the Asian citrus psyllid (Diaphorina citri, ACP). To date, HLB and ACP have expanded to Yibin city of Sichuan Province, posing an imminent threat to the citrus belt of upper and middle reach of Yangtze River, an important late maturing citrus-producing area in China. To understand the epidemiological route of CLas and ACP in newly invaded regions of Sichuan and thereby better establish an HLB-interception zone ranging from Leibo to Yibin, we evaluated the molecular variability of 19 CLas draft genomes from citrus or dodder (Cuscuta campestris). They include three type-specific prophage loci, three variable numbers of tandem repeat (VNTR) loci, a miniature inverted-repeat transposable element (MITE) types, and population diversity of 44 ACP mitochondrial genomes. The results indicated that CLas isolates in the newly invaded area (Pingshan) were more diverse than those in the HLB endemic areas (Leibo and Ningnan). Phylogenetic analysis based on mitochondrial genomes demonstrated that ACPs in Leibo, Pingshan and Xuzhou (rural areas) represent a new group (MG4), distinguished by the three unique SNPs in cox1, nad4 and cytb. However, the ACPs sampled from the urban areas of Cuiping and Xuzhou belonged to the southeastern China group (MG2-1). Altogether, our study revealed multiple sources of ACP and CLas in the HLB-interception zone and proposed their transmission route. This study contributes to the formulation of precise HLB prevention and control strategies in the HLB-interception zone in Sichuan and could be useful for HLB management efforts in other regions.


2011 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Yulu Xia ◽  
Gecheng Ouyang ◽  
Ronald A. Sequeira ◽  
Yu Takeuchi ◽  
Ignacio Baez ◽  
...  

The Asian form of huanglongbing (HLB) is caused by ‘Candidatus Liberibacter asiaticus (Las),’ a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama. Nutrient management, together with other cultural practices such as pruning and irrigation, for mitigation of the disease has been practiced in China for many years. Our literature review, field survey, and interviews with Chinese scientists and growers indicate that these cultural practices were generally ineffective for the disease management. However, a nutritional approach in conjunction with other cultural practices such as irrigation can maintain grove productivity for a certain time depending on the type of citrus species/cultivars, the age of the trees, the propagation method of the plants, the Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) population, and other factors. Symptomatic mature pommelo (Citrus maxima Merr) and sweet orange (C. sinensis L. Osbeck) plants can commonly survive and maintain a certain level of productivity for an additional 4 to 5 years, even longer assuming vigorous ACP control. Accepted for publication 27 June 2011. Published 3 October 2011.


Sign in / Sign up

Export Citation Format

Share Document