Untargeted Metabolomic Investigation of Wheat Infected with Stinking Smut Tilletia caries

2021 ◽  
Author(s):  
Rebecca A. Weed ◽  
Kyryll G. Savchenko ◽  
Leandro M. Lessin ◽  
Lori M. Carris ◽  
David R. Gang

Tilletia caries infection of wheat (Triticum aestivum) has become an increasing problem in organic wheat agriculture throughout the world. Little is known about how this pathogen alters host metabolism to ensure a successful infection. We investigated how T. caries allocates resources from wheat for its growth over the life cycle of the pathogen. An untargeted metabolomics approach that combined gas chromatography time-of-flight mass spectrometry and ultraperformance liquid chromatography tandem mass spectrometry platforms was used to determine which primary or specialized metabolite pathways are targeted and altered during T. caries infection. We found that T. caries does not dramatically alter the global metabolome of wheat but instead alters key metabolites for its own nutrient uptake and to antagonize host defenses by reducing wheat’s sweet immunity response and other related pathways. Our results highlight metabolic characteristics needed for selecting wheat varieties that are resistant to T. caries infection for organic agriculture. In addition, several wheat metabolites were identified that could be used in developing a diagnostic tool for early detection of T. caries infection.

2007 ◽  
pp. 659-662
Author(s):  
J Žurmanová ◽  
D Maláčová ◽  
F Půta ◽  
P Novák ◽  
J Říčný ◽  
...  

We have separated 2b myosin heavy chain (MyHC) isoform from the rat extensor digitorum longus muscle by SDS-PAGE and analyzed it by two subsequent mass spectrometry techniques. After tryptic digestion, the obtained peptides were identified by Matrix-Assisted Laser Desorption/Ionisation reflectron Time of Flight mass spectrometry (MALDI-TOF MS) and sequenced by liquid chromatography tandem mass spectrometry (ESI LC/MS/MS). The analyzed peptides proportionally covered 30 % of the 2b MyHC isoform sequence. The results suggest that the primary structure is identical with the highest probability to a NCBI database record ref|NP_062198.1|, representing the last updated record of rat 2b isoform. Nonetheless, four peptides carrying amino acid substitution(s) in comparison with the NCBI database record were identified.


Sign in / Sign up

Export Citation Format

Share Document