scholarly journals Characterization of the Crater Disease Strain of Rhizoctonia solani

1998 ◽  
Vol 88 (4) ◽  
pp. 366-371 ◽  
Author(s):  
L. Meyer ◽  
F. C. Wehner ◽  
L. H. Nel ◽  
D. E. Carling

Crater disease (CD) of wheat is caused by a Rhizoctonia solani strain of ambiguous phylogeny. Anastomosis reactions confirmed placement of CD-causing R. solani in anastomosis group (AG) 6, with results indicating a closer affinity to AG-6 GV than to AG-6 HG. Cultures of CD isolates were initially white to cream, turning a yellowish light brown after 10 days. Concentric rings of dark and light mycelium were evident from an early stage. Mycelium generally was appressed to the agar surface, with sparse aerial growth. A few light-colored, irregularly shaped sclerotia could be discerned after 2 weeks. The mean hyphal diameter of CD-causing R. solani was 7.46 μm (ranging from 5.0 to 10.0 μm), and cells contained a mean number of four (ranging from two to eight) nuclei, compared to a mean hyphal diameter of 8.58 and 8.42 μm and a mean nuclear number of six and four for AG-6 HG and AG-6 GV, respectively. The CD isolates had a slower growth rate (15.3 mm/day) than AG-6 HG (29.1 mm/day) and AG-6 GV (22.6 mm/day) but, like AG-6, were thiamine prototrophic. Conspicuous nodulose swellings were produced by CD-causing R. solani on roots of wheat, and infection resulted in retarded shoot growth. Smaller nodules were evident on bean and soybean roots. Fingerprint patterns generated for the various isolates with four enzymes, HpaII, Sau3AI, TaqI, and CfoI, showed the presence of a unique 610-bp fragment in the pathogen. It is proposed that CD-causing R. solani isolates represent a distinct intersterility group within AG-6 that is more related to subgroup GV than to subgroup HG.

2002 ◽  
Vol 92 (8) ◽  
pp. 893-899 ◽  
Author(s):  
D. E. Carling ◽  
R. E. Baird ◽  
R. D. Gitaitis ◽  
K. A. Brainard ◽  
S. Kuninaga

Rhizoctonia solani anastomosis group (AG)-13 was collected from diseased roots of field grown cotton plants in Georgia in the United States. Isolates of AG-13 did not anastomose with tester isolates of AG-1 through AG-12. Mycelium of all isolates of AG-13 were light brown but darkened as cultures aged. All isolates produced aerial mycelium. Concentric rings were visible after 3 to 4 days of growth but disappeared as cultures aged and darkened. Individual sclerotia were up to 1.5 mm in diameter, similar in color to the mycelium, and generally embedded in the agar. Clumps of sclerotia up to 5 mm in diameter were produced on the agar surface. All attempts to induce basidiospore production were unsuccessful. The 5.8S region of the rDNA from isolates of AG-13 was identical in length and sequence to isolates of all other AGs of R. solani. Length and sequence of the internal transcribed spacer (ITS) regions of rDNA from isolates of AG-13 were unique among AGs of R. solani. Similarity between AG-13 and other AGs of R. solani ranged from 68 to 85% for ITS region 1 and 85 to 95% for ITS region 2. Selected isolates of AG-13 caused minor or no damage to barley, cauliflower, cotton, lettuce, potato, and radish in laboratory or greenhouse studies.


1999 ◽  
Vol 89 (10) ◽  
pp. 942-946 ◽  
Author(s):  
D. E. Carling ◽  
E. J. Pope ◽  
K. A. Brainard ◽  
D. A. Carter

Isolates of Rhizoctonia solani collected from mycorrhizal orchid (Pterostylis acuminata) plants and adjacent leaf litter were characterized. Of 23 selected isolates, 20 were members of a new anastomosis group (AG-12) and the rest were members of AG-6. There were no bridging anastomosis reactions observed between AG-12 and other AGs of R. solani. Among the 20 isolates of AG-12 evaluated, 18 vegetatively compatible populations were detected, indicating diversity within the AG. Mature cultures were dark brown, as were mature sclerotia. Some cultures produced alternating dark- and light-colored concentric rings, with sclerotia forming in the darker rings. Most cultures were appressed to the agar surface. In tests run to characterize pathogenic potential, selected mycorrhizal isolates of AG-12 and AG-6 did little damage to potato and barley seedlings, moderate damage to head lettuce seedlings, and more extensive damage to seedlings of cauliflower and radish. Isolates of AG-12 have not been observed to fruit in nature, and all attempts to induce formation of the teleomorph (Thanatephorus cucumeris) in the laboratory by selected isolates of AG-12 failed.


2020 ◽  
Vol 86 (6) ◽  
pp. 457-467
Author(s):  
Tomoo Misawa ◽  
Daisuke Kurose ◽  
Kuniaki Shishido ◽  
Takeshi Toda ◽  
Shiro Kuninaga

2001 ◽  
Vol 91 (11) ◽  
pp. 1054-1061 ◽  
Author(s):  
Achmadi Priyatmojo ◽  
Verma E. Escopalao ◽  
Naomi G. Tangonan ◽  
Cecilia B. Pascual ◽  
Haruhisa Suga ◽  
...  

A new foliar disease on coffee leaves was observed in Mindanao, Philippines, in 1996. The symptoms appeared as large circular or irregularly shaped necrotic areas with small circular necrotic spots (1 mm or less in diameter) usually found around the periphery of the large necrotic areas. Rhizoctonia solani was consistently isolated from these diseased coffee leaves. Isolates obtained were multinucleate (3 to 12 nuclei per hyphal cell), had an optimum temperature for hyphal growth at 25°C, prototrophic for thiamine, and anastomosed with tester isolates belonging to R. solani anastomosis group 1 (AG-1). Mature cultures on potato dextrose agar (PDA) were light to dark brown. Sclerotia, light brown to brown, were formed on the surface of PDA and covered the whole mature colony culture. Individual sclerotia often aggregated into large clumps (3 to 8 mm in diameter) and their color was brown to dark brown. In pathogenicity tests, isolates from coffee caused necrotic symptoms on coffee leaves, whereas isolates of AG-1-IA (not isolated from coffee), 1-IB, and 1-IC did not. The results of analyses of restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer, random amplified polymorphism DNA, and fatty acid profiles showed that R. solani isolates from coffee are a population of AG-1 different from AG-1-IA, 1-IB, and 1-IC. These results suggest that R. solani isolates from coffee represent a new subgroup distinct from AG-1-IA, 1-IB, and 1-IC. A new subgroup ID (AG-1-ID) is proposed.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1119-1119 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
A. Poli ◽  
M. L. Gullino

Origanum vulgare L., common name oregano, family Labiatae, is grown for its aromatic and medicinal properties and as ornamental. In the fall of 2012, a blight was observed in a farm located near Albenga (northern Italy) on 6% of 30,000 50-day-old plants, grown in trays in a peat/perlite mix. Semicircular, water soaked lesions appeared on leaves and stems, starting from the basal ones. As the disease progressed, blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Eventually, infected plants died. Leaf and stem fragments taken from the margin of the diseased tissues belonging to 10 plants were disinfected for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA). A fungus with the morphological characters of Rhizoctonia solani was consistently recovered. Three isolates of R. solani obtained from affected plants were successfully anastomosed with R. solani isolate AG 1 (ATCC 58946). Three pairings were made for each tester strain. The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (2). Isolates from oregano were paired with R. solani isolates AG 2, 3, 4, 6, 7, or 11 and examined microscopically. Anastomosis was not observed in any of the pairings. Tests were conducted twice. Mycelium of 10-day-old isolates from oregano appeared reddish brown, coarse, and radiate. Numerous dark brown sclerotia, 0.3 to 1.0 mm diameter (average 0.7) developed within 10 days after transfer of mycelia to PDA in 90 mm diameter petri dishes at 21 to 24°C. The descriptions of mycelium and sclerotia were typical for subgroup IB Type 1 (4). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 and sequenced. BLASTn analysis (1) of the 538 bp showed a 99% homology with the sequence of R. solani FJ746937, confirming the morphological identification of the species. The nucleotide sequence has been assigned the GenBank Accession KC493638. For pathogenicity tests, one of the isolates assigned to the anastomosis group AG-1-IB was tested by placing 9 mm diameter mycelial disks removed from PDA 10-day-old cultures of the fungus on leaves of 90-day-old oregano plants (n = 35). Thirty-five plants inoculated with non-inoculated PDA disks served as controls. Plants were covered with plastic bags and maintained in a growth chamber at 25 ± 1°C with 12 h light/dark. The first symptoms, similar to those observed in the farm, developed 3 days after inoculation. Nine days after the artificial inoculation, 50% of plants were dead. About 10 colonies of R. solani were reisolated from infected leaves of inoculated plants. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. Symptoms caused by R. solani have been recently observed on O. vulgare in Greece (3). This is, to our knowledge, the first report of blight of O. vulgare caused by R. solani in Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res., 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease control. Kluwer Academic Publishers, The Netherlands, pp. 37-47, 1996. (3) C. D. Holevas et al. Benaki Phytopathol. Inst., Kiphissia, Athens, 19:1-96, 2000. (4) R. T. Sherwood. Phytopathology 59:1924, 1969.


1999 ◽  
Vol 89 (5) ◽  
pp. 414-420 ◽  
Author(s):  
S. Banniza ◽  
A. A. Sy ◽  
P. D. Bridge ◽  
S. A. Simons ◽  
M. Holderness

Isolates of Rhizoctonia solani were obtained from plant and soil samples that had been systematically collected in a field experiment in Côte d'Ivoire to study the diversity of the pathogen and the influence of three different rice rotations on the pathogen population. Characterization by morphology, anastomosis testing, pathogenicity testing, and restriction fragment length polymorphisms (RFLPs) of AT-rich DNA (AT-DNA) showed that there were no differences in isolates from different experimental plots, suggesting that the soil as well as the plant population of the fungus was indistinguishable throughout the experiment and was not influenced by crop rotation. Analysis of AT-DNA showed that the isolates obtained from plant material and one from soil shared a distinct banding pattern, identical with the AT-DNA RFLP obtained for the reference strain of anastomosis group 1 (AG-1). The remaining soil isolates produced a consistent RFLP pattern that was distinct from that of the plant isolates. Morphological characterization of isolates produced two major clusters consisting of the same groups of isolates as found by AT-DNA RFLP. Diversity in morphological characters was much higher in plant than in soil isolates and indicated that the population might consist of several clones. Anastomosis testing revealed that soil as well as plant isolates were able to fuse with the tester strain of AG-1. Significant differences in disease severity were observed between the two groups of isolates in pathogenicity tests on rice plants, with plant isolates being distinctively more virulent.


1995 ◽  
Vol 24 (4) ◽  
pp. 252 ◽  
Author(s):  
GC MacNish ◽  
DE Carling ◽  
MW Sweetingham ◽  
A Ogoshi ◽  
KA Brainard

2020 ◽  
Vol 46 (4) ◽  
pp. 289-298
Author(s):  
Maria Aurea Saboya Chiaradia Picarelli ◽  
Flavia Rodrigues Alves Patricio ◽  
Ricardo Harakava ◽  
Eliana Borges Rivas ◽  
Addolorata Colariccio

ABSTRACT The use of cultivated grasses in Brazil has grown by 40% between 2010 and 2015, and the species Zoysia japonica Steud, especially the cultivar ‘Esmeralda’, corresponds to 81% of the grass market in the country. The most important disease affecting zoysia grass, known as large patch, is caused by Rhizoctonia solani and occurs in the Brazilian lawns particularly during winter months. The aim of this study was to contribute to the identification and characterization of the anastomosis group of R. solani isolates from lesions typical of large patch collected from ‘Esmeralda’ grass at gardens and golf courses in the states of São Paulo and Bahia, Brazil. All 12 obtained isolates presented dark-brown colonies with aerial mycelial growth, multinucleated hyphae and absence of concentric zonation or sclerotia, and showed their greatest mycelial growth rate at 25°C. In pathogenicity experiments, except three out of R. solani isolates, reduced the growth of zoysia grass. Based on the analysis of sequences of the rDNA-ITS region, the isolates clustered with reference isolates of the anastomosis group AG 2-2 LP. Phylogenetic inference showed that the Brazilian isolates are grouped into two clades that shared the same common ancestral with 96% bootstrap. One of the clades includes only Brazilian isolates while the other one also includes American and Japanese R. solani isolates AG 2-2 LP. This is the first report and characterization of R. solani AG 2-2 LP in zoysiagrass in Brazil.


Plant Disease ◽  
2021 ◽  
Author(s):  
Pratibha Sharma ◽  
Dean Malvick ◽  
Ashok Kumar Chanda

Rhizoctonia solani causes root and stem diseases on soybean and sugar beet, and fungicides are commonly used to manage these diseases. Quinone outside inhibitor (QoI) fungicides (pyraclostrobin and azoxystrobin) have been used for in-furrow and post-emergence application since 2000. Succinate dehydrogenase inhibitor (SDHI) fungicides (sedaxane, penthiopyrad, and fluxapyroxad) became popular seed treatments following their registration in Minnesota and North Dakota between 2012 and 2016. Periodic monitoring of sensitivity to these fungicides in R. solani anastomosis group (AG) 2-2 is important to detect potential shifts in sensitivity over time. R. solani AG 2-2 isolates (n=35) collected from soybean and sugar beet in Minnesota and North Dakota were evaluated in vitro for sensitivity. Isolates were considered as baseline or non-baseline for the above mentioned fungicides based on previous potential exposure. The effective concentration (EC50) required to suppress radial fungal growth by 50% was determined. The mean EC50 values for sedaxane, penthiopyrad, fluxapyroxad and pyraclostrobin were 0.1, 0.15, 0.16, and 0.25 µg ml-1, respectively. The mean EC50 value for azoxystrobin for 22 isolates was 0.76 to 1.56 µg ml-1; and EC50 could not be determined for 13 isolates due to < 50% inhibition at the highest concentrations used. The EC50 values for the QoI fungicides did not differ significantly between baseline and non-baseline isolates. EC50 values for SDHI fungicides were significantly higher for isolates collected from soybean than from sugar beet, and isolates collected from both crops had similar EC50 values for pyraclostrobin. All SDHI fungicides and pyraclostrobin effectively suppressed R. solani isolates from soybean and sugar beet at low concentrations in vitro.


Sign in / Sign up

Export Citation Format

Share Document