scholarly journals Role of the Cyclic Adenosine Monophosphate-Dependent Protein Kinase in the Control of Meiotic Resumption in Bovine Oocytes Cultured with Thecal Cell Monolayers1

1997 ◽  
Vol 56 (6) ◽  
pp. 1363-1369 ◽  
Author(s):  
François J. Richard ◽  
Michel A. Fortier ◽  
Marc-André Sirard
1985 ◽  
Vol 77 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Y. Nakaoka ◽  
H. Ooi

A Triton-extracted model of Paramecium swims forwards when the Ca2+ concentration in the reactivation medium containing ATP is below 10(−6) M and swims backwards when Ca2+ concentration is above 10(−6) M. We found that cAMP (adenosine 3′:5′-cyclic monophosphoric acid) inhibited Ca-induced backward swimming of the model and caused forward swimming even when the [Ca2+] was above 10(−6) M. This effect of cAMP was abolished by an inhibitor of cAMP-dependent protein kinase. In order to study the possible role of phosphorylation in the regulation of ciliary orientation, ATP in the reactivation medium was replaced by an ATP analogue, ARP gamma S (adenosine 5′-O-3-thiotriphosphate), which irreversibly thiophosphorylates proteins. In ATP gamma S medium, the model ceased both swimming and ciliary beating, but the orientation of cilia was dependent on [Ca2+]. At low [Ca2+], cilia were perpendicular to the cell surface and, with increase in [Ca2+], their orientation gradually changed towards the cell anterior. Such a change in ciliary orientation corresponds roughly to the change in the swimming direction observed in ATP medium. The ciliary orientation towards the anterior of the cell in ATP gamma S medium at high [Ca2+] was maintained when [Ca2+] was decreased. In contrast, in ATP medium, the swimming direction was reversibly changed with changes in [Ca2+]. These results suggest that the ciliary orientation is regulated not only by Ca2+ but also by cAMP, probably via protein phosphorylation.


2013 ◽  
Vol 26 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Sung Woo Park ◽  
Ali Roohbakhsh ◽  
Richard J. Beninger

ObjectivesDopamine receptor-mediated 3′,5′-cyclic adenosine monophosphate (cAMP)-dependent intracellular signalling is important for reward-related learning. cAMP activates cAMP-dependent protein kinase (PKA) and exchange protein directly activated by cAMP (Epac). We tested the hypothesis that reward-related learning may be mediated by Epac.MethodsWe evaluated conditioned place preference (CPP) on the basis of nucleus accumbens (NAc) injections of amphetamine (20 μg/0.5 μl/side) plus Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylamanine (Sp-cAMPS) (0.1, 1.0, 10, 15, 20 μg/0.5 μl/side), an activator of both PKA and Epac, or amphetamine (20 μg) plus 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8-pCPT) (0.73, 1.27, 1.45, 2.89, 5.78, 11.56 μg/0.5 μl/side), an activator of Epac.ResultsIn agreement with previous results, Sp-cAMPS dose-dependently impaired CPP. 8-pCPT impaired CPP at one dose (1.45 μg/0.5 μl/side) and we replicated this effect three times.ConclusionThe results implicate Epac in the acquisition of reward-related learning.


Sign in / Sign up

Export Citation Format

Share Document