scholarly journals Enhanced NLRP3 Inflammasome Activation in the Arterial Endothelium with Acid Sphingomyelinase Transgene in Mice

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Xinxu Yuan ◽  
Owais M. Bhat ◽  
Hannah Lohner ◽  
Pin‐Lan Li
2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NOD-Like Receptor Protein 3 (NLRP3) inflammasome is a crucial component of an array of inflammatory conditions. It functions by boosting the secretion of pro-inflammatory cytokines: interleukin-1β (IL-1β) and interleukin-18 (IL-18). Previous studies have established the vital role of the acid sphingomyelinase (ASM)/ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. This study aimed to explore the effects and associated underlying mechanism of Cer-induced NLRP3 inflammasome activation.Methods: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells was used as an in vitro inflammatory model. Western blotting and Real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were evaluated using ELISA kits. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content.Results: Imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity and inhibited Cer accumulation, which indicated ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activation and ceramide production. Further analysis showed that the exogenous C2-Cer treated J774A.1 cells induced the overexpression of TXNIP, NLRP3, caspase-1, IL-1β and IL-18. Besides, TXNIP siRNA or verapamil inhibited C2-Cer-induced TXNIP overexpression and NLRP3 inflammasome activation.Conclusion: This study demonstrated the involvement of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Rupa Biswas ◽  
Raymond F. Hamilton ◽  
Andrij Holian

MARCO is the predominant scavenger receptor for recognition and binding of silica particles by alveolar macrophages (AM). Previously, it was shown that mice null for MARCO have a greater inflammatory response to silica, but the mechanism was not described. The aim of this study was to determine the relationship between MARCO and NLRP3 inflammasome activity. Silica increased NLRP3 inflammasome activation and release of the proinflammatory cytokine, IL-1β, to a greater extent in MARCO−/−AM compared to wild type (WT) AM. Furthermore, in MARCO−/−AM there was greater cathepsin B release from phagolysosomes, Caspase-1 activation, and acid sphingomyelinase activity compared to WT AM, supporting the critical role played by lysosomal membrane permeabilization (LMP) in triggering silica-induced inflammation. The difference in sensitivity to LMP appears to be in cholesterol recycling since increasing cholesterol in AM by treatment with U18666A decreased silica-induced NLRP3 inflammasome activation, and cells lacking MARCO were less able to sequester cholesterol following silica treatment. Taken together, these results demonstrate that MARCO contributes to normal cholesterol uptake in macrophages; therefore, in the absence of MARCO, macrophages are more susceptible to a greater inflammatory response by particulates known to cause NLRP3 inflammasome activation and the effect is due to increased LMP.


2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NLRP3 inflammasome serves as a crucial component in an array of inflammatory conditions by boosting the secretion of pro-inflammatory cytokines: IL-1β and IL-18. Hence, a thorough investigation of the underlying mechanism of NLRP3 activation could ascertain the requisite directionality to the ongoing studies, along with the identification of the novel drug targets for the management of inflammatory diseases. Previous studies have established the vital role of the Acid sphingomyelinase (ASM)/Ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. ASM mediates the ceramide production by sphingomyelin hydrolysis. Furthermore, the participation of the ASM/Cer in NLRP3 activation remains ambiguous. Methods: We employed lipopoysaccharide (LPS)/Adenosine Triphosphate (ATP)-induced activation of NLRP3 inflammasome in J774A.1 cells as an in vitro inflammatory model. Results: We observed that imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity & increased ceramide accumulation, which indicates ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: Thioredoxin interacting protein (TXNIP), NLRP3, Caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activity and ceramide production. Further examination showed that the exogenous C2-ceramide-treated J774A.1 cells induce the overexpression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18. Furthermore, verapamil inhibited C2-Ceramide mediated TXNIP overexpression and NLRP3 inflammasome activation. These findings infer that TXNIP overexpression leads to Cer mediated NLRP3 inflammasome activation. Conclusion: Our study validated the crucial role of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


Sign in / Sign up

Export Citation Format

Share Document