Temporal inhibition of ERK Activity by Optogenetic Control of MAPK Phosphatase 3

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Savanna R. Sharum ◽  
Payel Mondal ◽  
Kelly Cho ◽  
Kai Zhang
2012 ◽  
Vol 303 (2) ◽  
pp. F240-F252 ◽  
Author(s):  
Naomi Niisato ◽  
Mariko Ohta ◽  
Douglas C. Eaton ◽  
Yoshinori Marunaka

We investigated a physiological role for ERK, a member of the MAPK family, in the hypotonic stimulation of epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in renal epithelial A6 cells. We show that hypotonic stress causes a major dephosphorylation of ERK following a rapid transient phosphorylation. PD98059 (a MEK inhibitor) increases dephosphorylated ERK and enhances the hypotonic-stress-stimulated Na+ reabsorption. ERK dephosphorylation is mediated by MAPK phosphatase (MKP). Hypotonic stress activates p38, which in turn induces MKP-1 and to a lesser extent MKP-3 mRNA expression. Inhibition of p38 suppresses MKP-1 induction, preventing hypotonic stress from dephosphorylating ERK. Inhibition of MKP-1 and -3 by the inhibitor NSC95397 also suppresses the hypotonicity-induced dephosphorylation of ERK. NSC95397 reduces both β- and γ-ENaC mRNA expression and ENaC-mediated Na+ reabsorption stimulated by hypotonic stress. In contrast, pretreatment with PD98059 significantly enhances mRNA and protein expression of β- and γ-ENaC even under isotonic conditions. However, PD98059 only stimulates Na+ reabsorption in response to hypotonic stress, suggesting that ERK inactivation by itself (i.e., under isotonic conditions) is not sufficient to stimulate Na+ reabsorption, even though ERK inactivation enhances β- and γ-ENaC expression. Based on these results, we conclude that hypotonic stress stimulates Na+ reabsorption through at least two signaling pathways: 1) induction of MKP-1 that suppresses ERK activity and induces β- and γ-ENaC expression, and 2) promotion of translocation of the newly synthesized ENaC to the apical membrane.


2015 ◽  
Vol 408 ◽  
pp. 45-52 ◽  
Author(s):  
Mercedes Mori Sequeiros Garcia ◽  
Alejandra Gorostizaga ◽  
Laura Brion ◽  
Silvia I. González-Calvar ◽  
Cristina Paz

Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3274-3282 ◽  
Author(s):  
Annabel F. Valledor ◽  
Luís Arpa ◽  
Ester Sánchez-Tilló ◽  
Mònica Comalada ◽  
Cristina Casals ◽  
...  

Abstract Macrophages have the capacity to proliferate in response to specific growth factors, such as macrophage-colony stimulating factor (M-CSF). In the presence of several cytokines and activating factors, macrophages undergo growth arrest, become activated, and participate in the development of an immune response. We have previously observed that activation of extracellularly regulated kinase 1/2 (ERK-1/2) is required for macrophage proliferation in response to growth factors. A short and early pattern of ERK activity correlated with the proliferative response. In contrast, slightly prolonged patterns of activity of these kinases were induced by signals that lead to macrophage activation and growth arrest. IFN-γ is the main endogenous Th1-type macrophage activator. Here we report that stimulation with IFN-γ prolongs the pattern of ERK activity induced by M-CSF in macrophages. These effects correlate with IFN-γ–mediated inhibition of the expression of several members of the MAPK phosphatase family, namely MKP-1, -2, and -4. Moreover, inhibition of MKP-1 expression using siRNA technology or synthetic inhibitors also led to elongated ERK activity and significant blockage of M-CSF–dependent proliferation. These data suggest that subtle changes in the time course of activity of members of the MAPK family contribute to the antiproliferative effects of IFN-γ in macrophages.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 339-LB
Author(s):  
HAIQIANG DOU ◽  
CAROLINE A. MIRANDA ◽  
QUAN ZHANG ◽  
PATRIK RORSMAN ◽  
JOHAN TOLö

Sign in / Sign up

Export Citation Format

Share Document