cAMP-activated Nr4a1 expression requires ERK activity and is modulated by MAPK phosphatase-1 in MA-10 Leydig cells

2015 ◽  
Vol 408 ◽  
pp. 45-52 ◽  
Author(s):  
Mercedes Mori Sequeiros Garcia ◽  
Alejandra Gorostizaga ◽  
Laura Brion ◽  
Silvia I. González-Calvar ◽  
Cristina Paz
2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Savanna R. Sharum ◽  
Payel Mondal ◽  
Kelly Cho ◽  
Kai Zhang

2012 ◽  
Vol 303 (2) ◽  
pp. F240-F252 ◽  
Author(s):  
Naomi Niisato ◽  
Mariko Ohta ◽  
Douglas C. Eaton ◽  
Yoshinori Marunaka

We investigated a physiological role for ERK, a member of the MAPK family, in the hypotonic stimulation of epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in renal epithelial A6 cells. We show that hypotonic stress causes a major dephosphorylation of ERK following a rapid transient phosphorylation. PD98059 (a MEK inhibitor) increases dephosphorylated ERK and enhances the hypotonic-stress-stimulated Na+ reabsorption. ERK dephosphorylation is mediated by MAPK phosphatase (MKP). Hypotonic stress activates p38, which in turn induces MKP-1 and to a lesser extent MKP-3 mRNA expression. Inhibition of p38 suppresses MKP-1 induction, preventing hypotonic stress from dephosphorylating ERK. Inhibition of MKP-1 and -3 by the inhibitor NSC95397 also suppresses the hypotonicity-induced dephosphorylation of ERK. NSC95397 reduces both β- and γ-ENaC mRNA expression and ENaC-mediated Na+ reabsorption stimulated by hypotonic stress. In contrast, pretreatment with PD98059 significantly enhances mRNA and protein expression of β- and γ-ENaC even under isotonic conditions. However, PD98059 only stimulates Na+ reabsorption in response to hypotonic stress, suggesting that ERK inactivation by itself (i.e., under isotonic conditions) is not sufficient to stimulate Na+ reabsorption, even though ERK inactivation enhances β- and γ-ENaC expression. Based on these results, we conclude that hypotonic stress stimulates Na+ reabsorption through at least two signaling pathways: 1) induction of MKP-1 that suppresses ERK activity and induces β- and γ-ENaC expression, and 2) promotion of translocation of the newly synthesized ENaC to the apical membrane.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2665-2677 ◽  
Author(s):  
Laura Brion ◽  
Paula M. Maloberti ◽  
Natalia V. Gomez ◽  
Cecilia Poderoso ◽  
Alejandra B. Gorostizaga ◽  
...  

MAP kinases (MAPKs), such as ERK1/2, exert profound effects on a variety of physiological processes. In steroidogenic cells, ERK1/2 are involved in the expression and activation of steroidogenic acute regulatory protein, which plays a central role in the regulation of steroidogenesis. In MA-10 Leydig cells, LH and chorionic gonadotropin (CG) trigger transient ERK1/2 activation via protein kinase A, although the events that lead to ERK1/2 inactivation are not fully described. Here, we describe the hormonal regulation of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates MAPKs, in MA-10 cells. In our experiments, human CG (hCG)/cAMP stimulation rapidly and transiently increased MKP-1 mRNA levels by a transcriptional action. This effect was accompanied by an increase in protein levels in both nuclear and mitochondrial compartments. In cells transiently expressing flag-MKP-1 protein, hCG/cAMP promoted the accumulation of the recombinant protein in a time-dependent manner (10-fold at 1 h). Moreover, hCG/cAMP triggered ERK1/2-dependent MKP-1 phosphorylation. The blockade of cAMP-induced MAPK kinase/ERK activation abated MKP-1 phosphorylation but only partially reduced flag-MKP-1 protein accumulation. Together, these results suggest that hCG regulates MKP-1 at transcriptional and posttranslational level, protein phosphorylation being one of the mechanisms involved in this regulation. Our study also demonstrates that MKP-1 overexpression reduces the effects of cAMP on ERK1/2 phosphorylation, steroidogenic acute regulatory gene promoter activity, mRNA levels, and steroidogenesis, whereas MKP-1 down-regulation by small interfering RNA produces opposite effects. In summary, our data demonstrate that hCG regulates MKP-1 expression at multiple stages as a negative feedback regulatory mechanism to modulate the hormonal action on ERK1/2 activity and steroidogenesis.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3274-3282 ◽  
Author(s):  
Annabel F. Valledor ◽  
Luís Arpa ◽  
Ester Sánchez-Tilló ◽  
Mònica Comalada ◽  
Cristina Casals ◽  
...  

Abstract Macrophages have the capacity to proliferate in response to specific growth factors, such as macrophage-colony stimulating factor (M-CSF). In the presence of several cytokines and activating factors, macrophages undergo growth arrest, become activated, and participate in the development of an immune response. We have previously observed that activation of extracellularly regulated kinase 1/2 (ERK-1/2) is required for macrophage proliferation in response to growth factors. A short and early pattern of ERK activity correlated with the proliferative response. In contrast, slightly prolonged patterns of activity of these kinases were induced by signals that lead to macrophage activation and growth arrest. IFN-γ is the main endogenous Th1-type macrophage activator. Here we report that stimulation with IFN-γ prolongs the pattern of ERK activity induced by M-CSF in macrophages. These effects correlate with IFN-γ–mediated inhibition of the expression of several members of the MAPK phosphatase family, namely MKP-1, -2, and -4. Moreover, inhibition of MKP-1 expression using siRNA technology or synthetic inhibitors also led to elongated ERK activity and significant blockage of M-CSF–dependent proliferation. These data suggest that subtle changes in the time course of activity of members of the MAPK family contribute to the antiproliferative effects of IFN-γ in macrophages.


Author(s):  
Shirley Siew ◽  
Philip Troen ◽  
Howard R. Nankin

Testicular biopsies were obtained from six young male subjects (age range 24-33) who complained of infertility and who had clinical evidence of oligospermia. This was confirmed on histological examination which showed a broad spectrum from profound hypospermatogenesis to relatively normal appearing germinal epithelium. Thickening of the tubular walls was noted in half of the cases and slight peritubular fibrosis in one. The Leydig cells were reported as normal or unremarkable.Transmission electron microscopy showed that the thickening of the supporting tissue of the germinal epithelium was caused more by an increase in the thickness of the layers of the lamina propria than of the tubular wall itself. The changes in the basement membrane of the tubular wall consisted mostly of a greater degree of infolding into the tubule and some reduplication which gave rise to a multilayered appearance.


Author(s):  
Mohinder S. Jarial

The axolotl is a strictly aquatic salamander in which the larval external gills are retained throughout life. The external gills of the adult axolotl have been studied by light and electron microscopy for ultrastructural evidence of ionic transport. The thin epidermis of the gill filaments and gill stems is composed of 3 cell types: granular cells, the basal cells and a sparce population of intervening Leydig cells. The gill epidermis is devoid of muscles, and no mitotic figures were observed in any of its cells.The granular cells cover the gill surface as a continuous layer (Fig. 1, G) and contain secretory granules of different forms, located apically (Figs.1, 2, SG). Some granules are found intimately associated with the apical membrane while others fuse with it and release their contents onto the external surface (Fig. 3). The apical membranes of the granular cells exhibit microvilli which are covered by a PAS+ fuzzy coat, termed “glycocalyx” (Fig. 2, MV).


Author(s):  
R.T.F. Bernard ◽  
R.H.M. Cross

Smooth endoplasmic reticulum (SER) is involved in the biosynthesis of steroid hormones, and changes in the organisation and abundance of this organelle are regularly used as indicators of changes in the level of steroidogenesis. SER is typically arranged as a meshwork of anastomosing tubules which, with the transmission electron microscope, appear as a random mixture of cross, oblique and longitudinal sections. Less commonly the SER appears as swollen vesicles and it is generally suggested that this is an artefact caused during immersion fixation or during immersion of poorly-perfused tissue.During a previous study of the Leydig cells of a seasonally reproducing bat, in which tissue was fixed by immersion, we noted that tubular SER and vesicular SER often occured in adjacent cells and sometimes in the same cell, and that the abundance of the two types of SER changed seasonally. We came to doubt the widelyheld dogma that vesicular SER was an artefact of immersion fixation and set out to test the hypothesis that the method of fixation does not modify the ultrastructure of the SER.


1974 ◽  
Vol 76 (4) ◽  
pp. 729-740 ◽  
Author(s):  
Peter Kamp ◽  
Per Platz ◽  
Jørn Nerup

ABSTRACT By means of an indirect immunofluorescence technique, sera from 116 patients with Addison's disease, an equal number of age and sex matched controls and 97 patients with other endocrine diseases were examined for the occurrence of antibody to steroid-producing cells in ovary, testis and adrenal cortex. Fluorescent staining was observed in the theca cells of growing follicles, the theca lutein cells, testicular Leydig cells and adrenal cortical cells, i. e. cells which contain enzyme systems used in steroid hormone production. The "steroid-cell" antibody was present in 24 % of the patients with idiopathic Addison's disease, equally frequent in males and females, and in 17 % of the patients with tuberculous Addison's disease, but was rarely found in controls, including patients with other endocrine diseases. Female hypergonadotrophic hypogonadism made an exception, since the "steroid-cell" antibody was found in about half the cases with this condition.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S70-S71
Author(s):  
M. SCHUMACHER ◽  
J. LUDOLPH ◽  
F. LEIDENBERGER

Author(s):  
Alberto Ferlin ◽  
Marco D'Aurora ◽  
Marta Di Nicola ◽  
Andrea Garolla ◽  
Luca De Toni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document