scholarly journals Avoiding Drug Resistance by Substrate Envelope Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Jacqueto Zephyr ◽  
Ashley N. Matthew ◽  
Desaboini Nageswara Rao ◽  
Mina Henes ◽  
Wasih Kamran ◽  
...  
2013 ◽  
Vol 20 (9) ◽  
pp. 1116-1124 ◽  
Author(s):  
Madhavi N.L. Nalam ◽  
Akbar Ali ◽  
G.S. Kiran Kumar Reddy ◽  
Hong Cao ◽  
Saima G. Anjum ◽  
...  

2010 ◽  
Vol 84 (10) ◽  
pp. 5368-5378 ◽  
Author(s):  
Madhavi N. L. Nalam ◽  
Akbar Ali ◽  
Michael D. Altman ◽  
G. S. Kiran Kumar Reddy ◽  
Sripriya Chellappan ◽  
...  

ABSTRACT Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to “lock” into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Ashley N. Matthew ◽  
Jacqueto Zephyr ◽  
Desaboini Nageswara Rao ◽  
Mina Henes ◽  
Wasih Kamran ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles. IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223210
Author(s):  
Giselle de Faria Romero Soldi ◽  
Isadora Coutinho Ribeiro ◽  
Cintia Mayumi Ahagon ◽  
Luana Portes Ozório Coelho ◽  
Gabriela Bastos Cabral ◽  
...  

2019 ◽  
Vol 62 (17) ◽  
pp. 8062-8079 ◽  
Author(s):  
Linah N. Rusere ◽  
Gordon J. Lockbaum ◽  
Sook-Kyung Lee ◽  
Mina Henes ◽  
Klajdi Kosovrasti ◽  
...  

2007 ◽  
Vol 69 (5) ◽  
pp. 298-313 ◽  
Author(s):  
Sripriya Chellappan ◽  
G. S. Kiran Kumar Reddy ◽  
Akbar Ali ◽  
Madhavi N. L. Nalam ◽  
Saima Ghafoor Anjum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document