scholarly journals Increased ryanodine receptor type‐1 expression by Resistive Vibration Exercise (RVE) in human skeletal muscle fibers of 55‐days bed rest subjects

2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Michele Salanova ◽  
Britta Püttman ◽  
Gudrun Schiffl ◽  
Dieter Felsenberg ◽  
Dieter Blottner
1998 ◽  
Vol 89 (3) ◽  
pp. 693-698. ◽  
Author(s):  
Richard L. Brooksbank ◽  
Margaret E. Badenhorts ◽  
Hyam Isaacs ◽  
Nerina Savage

Background FKBP12 is a protein that is closely associated with the ryanodine receptor type 1 of skeletal muscle and modulates Ca2+ release by the channel. The immunosuppressants FK506 and rapamycin both bind to FKBP12 and in turn dissociate the protein from the ryanodine receptor. By treating healthy human skeletal muscle strips with FK506 or rapamycin and then subjecting the strips to the caffeine-halothane contracture test, this study determined that FK506 and rapamycin alter the sensitivity of the muscle strip to halothane, caffeine, or both. Methods Skeletal muscle strips from 10 healthy persons were incubated in Krebs medium equilibrated with a 95% oxygen and 5% carbon dioxide mixture, which contained either 12 microM FK506 (n = 8) or 12 microM rapamycin (n = 6), for 15 min at 37 degrees C. The strips were subjected to the caffeine-halothane contracture test for malignant hyperthermia according to the European Malignant Hyperthermia Group protocol. Results Treatment of normal skeletal muscle strips with FK506 and rapamycin resulted in halothane-induced contractures of 0.44+/-0.16 g and 0.6+/-0.49 g, respectively, at 2% halothane. Conclusions The results obtained show that pre-exposure of healthy skeletal muscle strips to either FK506 or rapamycin is sufficient to give rise to halothane-induced contractures. This is most likely caused by destabilization of Ca2+ release by the ryanodine receptor as a result of the dissociation of FKBP12. This finding suggests that a mutation in FKBP12 or changes in its capacity to bind to the ryanodine receptor could alter the halothane sensitivity of the skeletal muscle ryanodine receptor and thereby predispose the person to malignant hyperthermia.


1999 ◽  
Vol 86 (2) ◽  
pp. 455-460 ◽  
Author(s):  
J. L. Andersen ◽  
T. Gruschy-Knudsen ◽  
C. Sandri ◽  
L. Larsson ◽  
S. Schiaffino

The effects of a 37-day period of bed rest on myosin heavy chain (MHC) expression on both mRNA and protein level in human skeletal muscle fibers were studied. Muscle biopsies from vastus lateralis muscle were obtained from seven healthy young male subjects before and after the bed-rest period. Combined in situ hybridization, immunocytochemistry, and ATPase histochemistry analysis of serial sections of the muscle biopsies demonstrated that fibers showing a mismatch between MHC isoforms at the mRNA and protein level increased significantly after the bed-rest period, suggesting an increase in the amount of muscle fibers in a transitional state. Accordingly, fibers showing a match in expression of MHC-1 and of MHC-2A at the mRNA and protein level decreased, whereas fibers showing a match between MHC-2X mRNA and protein increased after bed rest. Overall, there was an increase in fibers in a transitional state from phenotypic type 1 → 2A and 2A → 2X. Furthermore, a number of fibers with unusual MHC mRNA and isoprotein combinations were observed after bed rest (e.g., type 1 fibers with only mRNA for 2X and type 1 fibers negative for mRNA for MHC-β/slow, 2A, and 2X). In contrast, no changes were revealed after an examination at the protein level alone. These data suggest that the reduced load-bearing activity imposed on the skeletal muscles through bed rest will alter MHC gene expression, resulting in combinations of mRNA and MHC isoforms normally not (or only rarely) observed in muscles subjected to load-bearing activity. On the other hand, the present data also show that 37 days of bed rest are not a sufficient stimulus to induce a similar change at the protein level, as was observed at the gene level.


1973 ◽  
Vol 344 (1) ◽  
pp. 1-12 ◽  
Author(s):  
P. D. Gollnick ◽  
R. B. Armstrong ◽  
C. W. Saubert ◽  
W. L. Sembrowich ◽  
R. E. Shepherd ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuo Wang ◽  
Bonnie Seaberg ◽  
Ximena Paez-Colasante ◽  
Mendell Rimer

Abstract To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.


2002 ◽  
Vol 82 (5) ◽  
pp. 645-655 ◽  
Author(s):  
Yoshiyuki Tsukamoto ◽  
Takao Senda ◽  
Toshiya Nakano ◽  
Chisato Nakada ◽  
Takehiko Hida ◽  
...  

2019 ◽  
Vol 170 (2) ◽  
pp. 509-524
Author(s):  
Kim M Truong ◽  
Gennady Cherednichenko ◽  
Isaac N Pessah

Abstract Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p′-DDT, p,p′-DDT, o,p′-DDE, and p,p′-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01–10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p′-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1–10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p′-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.


2000 ◽  
Vol 279 (5) ◽  
pp. E1191-E1195 ◽  
Author(s):  
M. Gaster ◽  
J. Franch ◽  
P. Staehr ◽  
H. Beck-Nielsen ◽  
T. Smith ◽  
...  

Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle.


2002 ◽  
Vol 47 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Jing Hu ◽  
Itsuro Higuchi ◽  
Yoshihiro Yoshida ◽  
Tadafumi Shiraishi ◽  
Mitsuhiro Osame

Sign in / Sign up

Export Citation Format

Share Document