scholarly journals Could differential expression of Apolipoprotein E (Apo E) in the alveolar epithelium be responsible for redox regulation of ENaC in type 1 and type 2 cells?

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
My N Helms ◽  
Julie L Self ◽  
Douglas C Eaton
2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Myeon-Sik Yang ◽  
Byung Kwan Oh ◽  
Daram Yang ◽  
Eun Young Oh ◽  
Yeonhwa Kim ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic is causing a global crisis. It is still unresolved. Although many therapies and vaccines are being studied, they are still in their infancy. As this pandemic continues, rapid and accurate research for the development of therapies and vaccines is needed. Therefore, it is necessary to understand characteristics of diseases caused by SARS-CoV-2 through animal models. Syrian hamsters are known to be susceptible to SARS-CoV-2. They were intranasally inoculated with SARS-CoV-2. At 2, 4, 8, 12, and 16 days post-infection (dpi), these hamsters were euthanized, and tissues were collected for ultrastructural and microstructural examinations. Microscopic lesions were prominent in the upper and lower respiratory tracts from 2 and 4 dpi groups, respectively. The respiratory epithelium in the trachea, bronchiole, and alveolar showed pathological changes. Inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils were infiltrated in/around tracheal lamina propria, pulmonary vessels, alveoli, and bronchiole. In pulmonary lesions, alveolar wall was thickened with infiltrated inflammatory cells, mainly neutrophils and macrophages. In the trachea, epithelial damages started from 2 dpi and recovered from 8 dpi, consistent with microscopic results, High levels of SARS-CoV-2 nucleoprotein were detected at 2 dpi and 4 dpi. In the lung, lesions were most severe at 8 dpi. Meanwhile, high levels of SARS-CoV-2 were detected at 4 dpi. Electron microscopic examinations revealed cellular changes in the trachea epithelium and alveolar epithelium such as vacuolation, sparse micro-organelle, and poor cellular margin. In the trachea epithelium, the number of cytoplasmic organelles was diminished, and small vesicles were prominent from 2 dpi. Some of these electron-lucent vesicles were filled with virion particles. From 8 dpi, the trachea epithelium started to recover. Because of shrunken nucleus and swollen cytoplasm, the N/C ratio of type 2 pneumocyte decreased at 8 and 12 dpi. From 8 dpi, lamellar bodies on type 2 pneumocyte cytoplasm were increasingly observed. Their number then decreased from 16 dpi. However, there was no significant change in type 1 pneumocyte. Viral vesicles were only observed in the cytoplasm of type 2 pneumocyte. In conclusion, ultra- and micro-structural changes presented in this study may provide useful information for SARS-CoV-2 studies in various fields.


Life Sciences ◽  
2013 ◽  
Vol 92 (4-5) ◽  
pp. 276-281 ◽  
Author(s):  
Masaru Iwai ◽  
Hisako Sone ◽  
Harumi Kanno ◽  
Tomozo Moritani ◽  
Masatsugu Horiuchi

2021 ◽  
Vol 118 (20) ◽  
pp. e2101100118
Author(s):  
Satoshi Watanabe ◽  
Nikolay S. Markov ◽  
Ziyan Lu ◽  
Raul Piseaux Aillon ◽  
Saul Soberanes ◽  
...  

Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.


2010 ◽  
Vol 51 (6) ◽  
pp. 13S
Author(s):  
Zachary Emond ◽  
Vinit Varu ◽  
Sadaf Ahanchi ◽  
Janet Martinez ◽  
Melina R. Kibbe

Sign in / Sign up

Export Citation Format

Share Document