scholarly journals Effects of Aging and Renin‐Angiotensin System (RAS) Blockade on the Intra‐renal RAS in Older Fischer 344 X Brown Norway Rats

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Sherry O Kasper ◽  
Shea Gilliam‐Davis ◽  
Leanne Groban ◽  
Christy S Carter ◽  
William E Sonntag ◽  
...  
2010 ◽  
Vol 42 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Micheline M. de Resende ◽  
Timothy J. Stodola ◽  
Andrew S. Greene

Autologous bone marrow cell (BMC) transplantation has been shown as a potential approach to treat various ischemic diseases. However, under many conditions BMC dysfunction has been reported, leading to poor cell engraftment and a failure of tissue revascularization. We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation (ES) is impaired in the SS/Mcwi rats and that this effect is related to a dysregulation of the renin angiotensin system (RAS) that is normalized by the replacement of chromosome 13 derived from the Brown Norway rat (SS-13BN/Mcwi consomic rats). The present study explored bone marrow-derived endothelial cell (BM-EC) function in the SS/Mcwi rat and its impact on skeletal muscle angiogenesis induced by ES. SS/Mcwi rats were randomized to receive BMC from: SS/Mcwi; SS-13BN/Mcwi; SS/Mcwi rats infused with saline or ANG II (3 ng·kg−1·min−1). BMC were injected in the stimulated tibialis anterior muscle of SS/Mcwi rats. Vessel density was evaluated in unstimulated and stimulated muscles after 7 days of ES. BMC isolated from SS/Mcwi or SS/Mcwi rats infused with saline failed to restore angiogenesis induced by ES. However, BMC isolated from SS-13BN/Mcwi and SS/Mcwi rats infused with ANG II effectively restored the angiogenesis response in the SS/Mcwi recipient. Furthermore, ANG II infusion increased the capacity of BM-EC to induce endothelial cell tube formation in vitro and slightly increased VEGF protein expression. This study suggests that dysregulation of the RAS in the SS/Mcwi rat contributes to impaired BM-EC function and could impact the angiogenic therapeutic potential of BMC.


2018 ◽  
Vol 72 ◽  
pp. 134-146 ◽  
Author(s):  
Ryan J. Tomm ◽  
Maric T. Tse ◽  
Daniel J. Tobiansky ◽  
Helen R. Schweitzer ◽  
Kiran K. Soma ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7407
Author(s):  
Yuan Sun ◽  
Lunbo Tan ◽  
Rugina I. Neuman ◽  
Michelle Broekhuizen ◽  
Sam Schoenmakers ◽  
...  

Soluble Fms-like tyrosine kinase-1 (sFlt-1) is increased in pre-eclampsia. The proton pump inhibitor (PPI) lowers sFlt-1, while angiotensin increases it. To investigate whether PPIs lower sFlt-1 by suppressing placental renin–angiotensin system (RAS) activity, we studied gene expression and protein abundance of RAS components, including megalin, a novel endocytic receptor for prorenin and renin, in placental tissue obtained from healthy pregnant women and women with early-onset pre-eclampsia. Renin, ACE, ACE2, and the angiotensin receptors were expressed at identical levels in healthy and pre-eclamptic placentas, while both the (pro)renin receptor and megalin were increased in the latter. Placental prorenin levels were upregulated in pre-eclamptic pregnancies. Angiotensinogen protein, but not mRNA, was detectable in placental tissue, implying that it originates from maternal blood. Ex vivo placental perfusion revealed a complete washout of angiotensinogen, while prorenin release remained constant. The PPI esomeprazole dose-dependently reduced megalin/(pro)renin receptor-mediated renin uptake in Brown Norway yolk sac epithelial cells and decreased sFlt-1 secretion from placental villous explants. Megalin inhibition blocked angiotensinogen uptake in epithelial cells. In conclusion, our data suggest that placental RAS activity depends on angiotensinogen taken up from the maternal systemic circulation. PPIs might interfere with placental (pro)renin-AGT uptake/transport, thereby reducing angiotensin formation as well as angiotensin-induced sFlt-1 synthesis.


2001 ◽  
Vol 21 (6) ◽  
pp. 580-592 ◽  
Author(s):  
Arnold Boonstra ◽  
Dick de Zeeuw ◽  
Paul E. de Jong ◽  
Gerjan Navis

Sign in / Sign up

Export Citation Format

Share Document