scholarly journals CGRP Selectively Activates a Subpopulation of Nodose Sensory Neurons with Tonic Action Potential Firing Properties

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Rubens Fazan ◽  
Yongjun Lu ◽  
Mark W Chapleau
2015 ◽  
Vol 114 (2) ◽  
pp. 1146-1157 ◽  
Author(s):  
V. Carmean ◽  
M. A. Yonkers ◽  
M. B. Tellez ◽  
J. R. Willer ◽  
G. B. Willer ◽  
...  

The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons.


2019 ◽  
Author(s):  
Antara Das ◽  
Bingyao Zhu ◽  
Yunyao Xie ◽  
Lisha Zeng ◽  
An T. Pham ◽  
...  

AbstractAdvances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, how individual mutations within SCN1A produce seizures remains elusive for most mutations. Previous work from our lab has shown that the K1270T (KT) mutation, which is linked to GEFS+ (Genetic Epilepsy with Febrile Seizure plus) in humans, causes reduced firing of GABAergic neurons in a Drosophila knock-in model. To examine the effect of this mutation in mammals, we introduced the equivalent KT mutation into the mouse Scn1a (Scn1aKT) gene using CRISPR/Cas9. Mouse lines carrying this mutation were examined in two widely used genetic backgrounds, C57BL/6NJ and 129×1/SvJ. In both backgrounds, homozygous mutants had spontaneous seizures and died by postnatal day 23. There was no difference in the lifespan of mice heterozygous for the mutation in either background when compared to wild-type littermates up to 6 months. Heterozygous mutants had heat-induced seizures at ~42 deg. Celsius, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices, current-clamp recordings revealed a significant depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin-expressing inhibitory interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. Our results indicate that Scn1aKT/+ mice develop seizures, and impaired action potential firing of inhibitory interneurons in Scn1aKT/+ mice may produce hyperexcitability in the hippocampus.


2013 ◽  
Vol 304 (5) ◽  
pp. F491-F497 ◽  
Author(s):  
Wolfgang Freisinger ◽  
Johannes Schatz ◽  
Tilmann Ditting ◽  
Angelika Lampert ◽  
Sonja Heinlein ◽  
...  

Sensory neurons with afferent axons from the kidney are extraordinary in their response to electrical stimulation. More than 50% exhibit a tonic firing pattern, i.e., sustained action potential firing throughout depolarizing, pointing to an increased excitability, whereas nonrenal neurons show mainly a phasic response, i.e., less than five action potentials. Here we investigated whether these peculiar firing characteristics of renal afferent neurons are due to differences in the expression of voltage-gated sodium channels (Navs). Dorsal root ganglion (DRG) neurons from rats (Th11-L2) were recorded by the current-clamp technique and distinguished as “tonic” or “phasic.” In voltage-clamp recordings, Navs were characterized by their tetrodotoxoxin (TTX) sensitivity, and their molecular identity was revealed by RT-PCR. The firing pattern of 66 DRG neurons (41 renal and 25 nonrenal) was investigated. Renal neurons exhibited more often a tonic firing pattern (56.1 vs. 12%). Tonic neurons showed a more positive threshold (−21.75 ± 1.43 vs.−29.33 ± 1.63 mV; P < 0.05), a higher overshoot (56.74 [53.6–60.96] vs. 46.79 mV [38.63–54.75]; P < 0.05) and longer action potential duration (4.61 [4.15–5.85] vs. 3.35 ms [2.12–5.67]; P < 0.05). These findings point to an increased presence of the TTX-resistant Navs 1.8 and 1.9. Furthermore, tonic neurons exhibited a relatively higher portion of TTX-resistant sodium currents. Interestingly, mRNA expression of TTX-resistant sodium channels was significantly increased in renal, predominantly tonic, DRG neurons. Hence, under physiological conditions, renal sensory neurons exhibit predominantly a firing pattern associated with higher excitability. Our findings support that this is due to an increased expression and activation of TTX-resistant Navs.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0179-21.2021
Author(s):  
Andres Hernandez-Clavijo ◽  
Nicole Sarno ◽  
Kevin Y. Gonzalez-Velandia ◽  
Rudolf Degen ◽  
David Fleck ◽  
...  

Function ◽  
2021 ◽  
Author(s):  
Nathan Grainger ◽  
Laura Guarina ◽  
Robert H Cudmore ◽  
L Fernando Santana

Abstract The cardiac cycle starts when an action potential is produced by pacemaking cells in the sino-atrial node. This cycle is repeated approximately 100,000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sino-atrial node is poorly understood. Here, we tested the hypothesis that the organization of the sino-atrial node micro-vasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sino-atrial node. Accordingly, sino-atrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sino-atrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sino-atrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the micro-vascular densities vary regionally within the sino-atrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sino-atrial node places myocytes with metabolically demanding, high frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sino-atrial node myocytes could limit these cells to function to support sino-atrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.


2021 ◽  
Author(s):  
Mala Shah ◽  
Alexandra Topczewska ◽  
Elisabetta Giacalone ◽  
Wendy S Pratt ◽  
Michele Migliore ◽  
...  

The medial entorhinal cortex (mEC) plays a salient role in physiological processes such as spatial cognition and spatial coding. mEC layer II stellate neurons, in particular, influence these processes. Interestingly, ventral and dorsal stellate neurons diversely affect these processes and have distinct intrinsic membrane properties and action potential firing patterns. Little, though, is known about how ventral stellate neuron intrinsic excitability is regulated. We show that ventral stellate neurons predominantly possess T-type Ca2+ currents encoded by CaV3.2 subunits, with dorsal stellate neurons having small or no currents. Further, twice as much CaV3.2 mRNA was present in ventral than dorsal mEC. In line with T-type, CaV3.2 Ca2+ current biophysical properties, depolarising stimuli activated these currents in ventral, but not dorsal, neurons. Here, these currents acted in concert with persistent Na+ currents to elevate input resistance and tonic action potential firing. CaV3.2 currents also enhanced excitatory post-synaptic potential decay and integration solely in ventral neurons. These results reveal that CaV3.2 currents, together with persistent Na+ currents, impart the characteristic intrinsic membrane and firing properties of ventral stellate neurons. This signifies that specific voltage-gated conductances distinctly affect ventral and dorsal mEC stellate neuron activity and functions such as spatial memory and spatial navigation.


2019 ◽  
Author(s):  
Theanne N. Griffith ◽  
Trevor A. Docter ◽  
Ellen A. Lumpkin

AbstractSmall-diameter vesicular glutamate transporter 3-lineage (Vglut3lineage) dorsal root ganglion (DRG) neurons play an important role in mechanosensation and thermal hypersensitivity; however, little is known about their intrinsic electrical properties. We therefore set out to investigate mechanisms of excitability within this population. Calcium microfluorimetry analysis of male and female mouse DRG neurons demonstrated that the cooling compound menthol selectively activates a subset of Vglut3lineage neurons. Whole-cell recordings showed that small-diameter Vglut3lineage DRG neurons fire menthol-evoked action potentials and exhibited robust, transient receptor potential melastatin 8 (TRPM8)-dependent discharges at room temperature. This heightened excitability was confirmed by current-clamp and action potential phase-plot analyses, which showed menthol-sensitive Vglut3lineage neurons to have more depolarized membrane potentials, lower firing thresholds, and higher evoked firing frequencies compared with menthol-insensitive Vglut3lineage neurons. A biophysical analysis revealed voltage-gated sodium channel (NaV) currents in menthol-sensitive Vglut3lineage neurons were resistant to entry into slow inactivation compared with menthol-insensitive neurons. Multiplex in situ hybridization showed similar distributions of tetrodotoxin (TTX)-sensitive NaVs transcripts between TRPM8-positive and -negative Vglut3lineage neurons; however, NaV1.8 transcripts, which encode TTX-resistant channels, were more prevalent in TRPM8-negative neurons. Conversely, pharmacological analyses identified distinct functional contributions of NaV subunits, with NaV1.1 driving firing in menthol-sensitive neurons, whereas other small-diameter Vglut3lineage neurons rely primarily on TTX-resistant NaV channels. Additionally, when NaV1.1 channels were blocked, the remaining NaV currents readily entered into slow inactivation in menthol-sensitive Vglut3lineage neurons. Thus, these data demonstrate that TTX-sensitive NaVs drive action potential firing in menthol-sensitive sensory neurons and contribute to their heightened excitability.Significance StatementSomatosensensory neurons encode various sensory modalities including thermoreception, mechanoreception, nociception and itch. This report identifies a previously unknown requirement for tetrodotoxin-sensitive sodium channels in action potential firing in a discrete subpopulation of small-diameter sensory neurons that are activated by the cooling agent menthol. Together, our results provide a mechanistic understanding of factors that control intrinsic excitability in functionally distinct subsets of peripheral neurons. Furthermore, as menthol has been used for centuries as an analgesic and anti-pruritic, these findings support the viability of NaV1.1 as a therapeutic target for sensory disorders.


Sign in / Sign up

Export Citation Format

Share Document