scholarly journals Intestinal Regeneration after Irradiation: Stem cells and IGF‐I

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Brooks Patrick Scull ◽  
Scott Magness ◽  
Ginny Lee ◽  
P. Kay Lund
2002 ◽  
Vol 283 (2) ◽  
pp. G457-G464 ◽  
Author(s):  
Heather R. Wilkins ◽  
Kinuko Ohneda ◽  
Temitope O. Keku ◽  
A. Joseph D'Ercole ◽  
C. Randall Fuller ◽  
...  

Insulin-like growth factor I (IGF-I) may promote survival of putative stem cells in the small intestinal epithelium. Mitosis and apoptosis were quantified in crypts of nonirradiated and irradiated IGF-I transgenic (TG) and wild-type (WT) littermates. The mean apoptotic index was significantly greater in WT vs. TG littermates. After irradiation, apoptotic indexes increased, and WT mice showed a more dramatic increase in apoptosis than TG mice at the location of putative stem cells. After irradiation, no mitotic figures were observed in WT crypts, whereas mitosis was maintained within the jejunal epithelium of TG mice. The abundance and localization of Bax mRNA did not differ between nonirradiated littermates. However, there was more Bax mRNA in TG vs. WT mice after irradiation. Bax mRNA was located along the entire length of the irradiated crypt epithelium, but there was less Bax protein observed in the bottom third of TG mouse crypts compared with WT littermates. IGF-I regulates cell number by stimulating crypt cell proliferation and decreasing apoptosis preferentially within the stem cell compartment.


2010 ◽  
Vol 19 (9) ◽  
pp. 1297-1305 ◽  
Author(s):  
Kerry J. Manton ◽  
Sean Richards ◽  
Derek Van Lonkhuyzen ◽  
Luke Cormack ◽  
David Leavesley ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4818-4818
Author(s):  
Magda Kucia ◽  
Janina Ratajczak ◽  
Dong-Myung Shin ◽  
Rui Liu ◽  
Michal Masternak ◽  
...  

Abstract Abstract 4818 Background. Caloric uptake elevates the plasma level of growth hormone (GH), which subsequently stimulates release of insulin-like growth factor-1 (IGF-1) from the liver. Evidence is accumulating that an increase in caloric intake, which leads to prolonged growth hormone (GH) and insulin/insulin-like growth factors signaling (IIS), accelerates aging. On the other hand, caloric restriction and a resulting decrease in IIS has the opposite effect and extends lifespan (Nature 2010;464:504). In support of this finding, mice with low circulating IGF-1 levels (Laron, Ames, and Snell dwarfs) live much longer than their normal littermates and, conversely, mice with high levels of circulating IGF-1 (e.g., transgenic mice that overexpress bovine growth hormone [bGH]) have significantly reduced life span. Aim of Hypothesis. To explain these phenomena, we hypothesized that prolonged IIS prematurely depletes adult tissues of very small embryonic-like stem cells (VSELs), which are the most developmentally primitive adult tissue-residing pluripotent stem cells (Leukemia 2006;20:857). We envision that VSELs play an important role in rejuvenation of the pool of tissue-committed stem cells and, as we observed previously, the number of these cells in murine BM decreases with age. We demonstrated that in bone marrow (BM), VSELs give rise to long-term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011; doi:10.1038/leu.2011.73, Exp. Hematology 2011;39:225–237). As previously reported, VSELs are kept quiescent in BM and protected from premature depletion by erasure of the somatic imprint in differentially methylated regions (DMRs) of some paternally imprinted genes involved in IIS (e.g., Igf2-H19 and RasGRF1). Results. In the current study, we provide direct evidence that the number of VSELs deposited in BM during ontogenesis is related to plasma IIS signaling, which is affected by the GH/IGF-1 level. In particular, mice with elevated IGF-I level in plasma due to expression of the bovine GH transgene and wild type mice injected for a sustained period with porcine GH both exhibit significant decreases in the number of VSELs and HSCs in BM compared to control animals. These decreases were paralleled by epigenetic changes in Igf2-H19 and RasGRF1 loci in which DMRs became hypermethylated over time. These changes in methylation lead to increases in IGF-2 and RasGRF1 expression and may explain why bovine GH transgenic mice have an increase in IIS and a significantly reduced life span. Conversely, mice with low circulating plasma IGF-1 levels (Laron and Ames dwarf mice ) have higher numbers of VSELs and HSCs in BM that, in contrast to aged-matched normal littermates, are maintained at high levels even into advanced age. The molecular signature of VSELs in these animals revealed prolonged retention of hypomethylation in the DMRs within the Igf2-H19 and RasGRF1 loci, which attenuated IIS signaling in these cells. The number of VSELs, however, decreased in these animals after prolonged treatment with porcine GH or human recombinant IGF-I. Conclusions. Our data shed new light on the relationships between senescence, high GH level, prolonged IIS, and depletion of VSELs and LT-HSCs. Accordingly, we propose a new paradigm in which chronic IIS (e.g., due to chronic high caloric intake and the resulting elevated GH and IGF-1 levels) prematurely depletes VSELs in BM, which leads to a decrease in the number of LT-HSCs. By contrast, caloric restriction and a decrease in IIS may delay the age-dependent elimination of VSELs from BM. This study also indicates that GH-based anti-aging therapies need careful re-evaluation of their potentially uncontrolled stimulation of VSELs in BM and downstream effects on hematopoiesis and the development of hematological malignancies. In support of this concern, elevated IIS may lead to hematological malignancies (uncontrolled proliferation of VSELs), while, by contrast, it is known that Laron dwarf mice and Laron dwarf patients, which have a GH-receptor deficiency and low plasma IGF-1 levels, do not develop leukemias. Disclosures: Ratajczak: Neostem Inc: Consultancy, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. LBA-5-LAB-5
Author(s):  
Magda Kucia ◽  
Janina Ratajczak ◽  
Rui Liu ◽  
Dong-Myung Shin ◽  
Michal Masternak ◽  
...  

Abstract Abstract LBA-5 Background: It is known that an increase in caloric intake leads to increase in plasma growth hormone (GH) level that subsequently induces secretion of insulin-like growth factor-1 (IGF-1) from liver, what leads to accelerated aging (Nature 2010;464:504). On the other hand, caloric restriction and a resulting decrease in plasma IGF-1 level has the opposite effect and extends lifespan. It also known that adult tissues contain a population of pluripotent very small embryonic like stem cells (VSELs) that play as postulated an important role in rejuvenation of long term hematopoietic stem cells (LT-HSCs) in bone marrow (BM) Leukemia 2011; doi:10.1038/leu.2011.73, Exp. Hematology 2011;39:225–237). As we observed previously, the number of these cells in murine BM decreases with age and VSELs are kept quiescent in BM and protected from premature depletion by erasure of the somatic imprint in differentially methylated regions (DMRs) of some paternally imprinted genes involved in insulin/insulin growth factors signaling (IIS) such as e.g., Igf2-H19 and RasGRF1 (Leukemia 2009;23:2042). Hypothesis: To explain and connect these phenomena together, we hypothesized that prolonged insulin/insulin growth factors signaling (IIS) prematurely depletes VSELs from the adult tissues and in BM may negatively impact on population of HSCs. Material and Methods: The number of VSELs and HSCs in long living murine strains with inborn low level of circulating IGF-1 (Laron- and Ames- dwarfs) as well as in short living mice with high levels of circulating IGF-1 (e.g., transgenic mice that overexpress bovine growth hormone; bGH) was evaluated by FACS. VSELs were isolated and epigenetic status of genes regulating pluripotency (e.g., Oct-4) as well as imprinted genes regulating IIS was evaluated by employing bisulfate modification of DNA followed by sequencing and by COBRE assay. We also challenged long living mice with low IGF-1 plasma level by daily injections of recombinant GH or IGF-1. Results: We found that the number of VSELs and HSCs residing in BM inversely correlates with plasma GH/IGF-1 level. To support this, mice with low circulating plasma IGF-1 levels (Laron- and Ames-dwarf mice) have higher numbers of VSELs and HSCs in BM that, in contrast to aged-matched normal littermates, are maintained at high levels even into advanced age. The analysis of molecular signature of VSELs in these animals revealed prolonged retention of hypomethylation in the DMRs within the Igf2-H19 and RasGRF1 loci, which attenuates IIS signaling in these cells. The number of VSELs, however, decreased in these animals after prolonged treatment with GH or recombinant IGF-I. Conversely, mice with elevated IGF-I level in plasma due to expression of the GH transgene or normal wild type mice injected for a sustained period with recombinant GH both exhibit significant decreases in the number of VSELs and HSCs in BM compared to control animals. These decreases were paralleled by epigenetic changes in Igf2-H19 and RasGRF1 loci in which DMRs became hypermethylated over time. These changes in methylation lead to increases in IGF-2 and RasGRF1 expression and may explain why GH transgenic mice have an increase in IIS that leads to shortening of life span in these animals. Conclusions: Our data shed new light on the relationships between senescence, GH/IGF-1 level, prolonged IIS, and number of VSELs and LT-HSCs. Accordingly, we propose a new paradigm in which a decrease in IIS (e.g., due to caloric restriction that lowers plasma IGF-1 level) may delay the age-dependent elimination of VSELs from adult tissues. By contrast, chronic IIS (e.g., due to chronic high caloric intake and the resulting elevated GH and IGF-1 levels) prematurely depletes VSELs residing in adult organs, which for example in BM leads to a decrease in the number of LT-HSCs. This study also indicates that GH-based anti-aging therapies need careful re-evaluation of their potentially uncontrolled stimulation of VSELs in BM that may lead to development of hematological malignancies. In support of this, elevated GH and IIS lead to hematological malignancies, while, by contrast, Laron dwarf mice and Laron dwarf patients, which have a low plasma IGF-1 levels, do not develop leukemias. Disclosures: Ratajczak: Neostem Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. LBA-5-LAB-5
Author(s):  
Magda Kucia ◽  
Janina Ratajczak ◽  
Rui Liu ◽  
Dong-Myung Shin ◽  
Michal Masternak ◽  
...  

Abstract LBA-5 Background: It is known that an increase in caloric intake leads to increase in plasma growth hormone (GH) level that subsequently induces secretion of insulin-like growth factor-1 (IGF-1) from liver, what leads to accelerated aging (Nature 2010;464:504). On the other hand, caloric restriction and a resulting decrease in plasma IGF-1 level has the opposite effect and extends lifespan. It also known that adult tissues contain a population of pluripotent very small embryonic like stem cells (VSELs) that play as postulated an important role in rejuvenation of long term hematopoietic stem cells (LT-HSCs) in bone marrow (BM) Leukemia 2011; doi:10.1038/leu.2011.73, Exp. Hematology 2011;39:225–237). As we observed previously, the number of these cells in murine BM decreases with age and VSELs are kept quiescent in BM and protected from premature depletion by erasure of the somatic imprint in differentially methylated regions (DMRs) of some paternally imprinted genes involved in insulin/insulin growth factors signaling (IIS) such as e.g., Igf2-H19 and RasGRF1 (Leukemia 2009;23:2042). Hypothesis: To explain and connect these phenomena together, we hypothesized that prolonged insulin/insulin growth factors signaling (IIS) prematurely depletes VSELs from the adult tissues and in BM may negatively impact on population of HSCs. Material and Methods: The number of VSELs and HSCs in long living murine strains with inborn low level of circulating IGF-1 (Laron- and Ames- dwarfs) as well as in short living mice with high levels of circulating IGF-1 (e.g., transgenic mice that overexpress bovine growth hormone; bGH) was evaluated by FACS. VSELs were isolated and epigenetic status of genes regulating pluripotency (e.g., Oct-4) as well as imprinted genes regulating IIS was evaluated by employing bisulfate modification of DNA followed by sequencing and by COBRE assay. We also challenged long living mice with low IGF-1 plasma level by daily injections of recombinant GH or IGF-1. Results: We found that the number of VSELs and HSCs residing in BM inversely correlates with plasma GH/IGF-1 level. To support this, mice with low circulating plasma IGF-1 levels (Laron- and Ames-dwarf mice) have higher numbers of VSELs and HSCs in BM that, in contrast to aged-matched normal littermates, are maintained at high levels even into advanced age. The analysis of molecular signature of VSELs in these animals revealed prolonged retention of hypomethylation in the DMRs within the Igf2-H19 and RasGRF1 loci, which attenuates IIS signaling in these cells. The number of VSELs, however, decreased in these animals after prolonged treatment with GH or recombinant IGF-I. Conversely, mice with elevated IGF-I level in plasma due to expression of the GH transgene or normal wild type mice injected for a sustained period with recombinant GH both exhibit significant decreases in the number of VSELs and HSCs in BM compared to control animals. These decreases were paralleled by epigenetic changes in Igf2-H19 and RasGRF1 loci in which DMRs became hypermethylated over time. These changes in methylation lead to increases in IGF-2 and RasGRF1 expression and may explain why GH transgenic mice have an increase in IIS that leads to shortening of life span in these animals. Conclusions: Our data shed new light on the relationships between senescence, GH/IGF-1 level, prolonged IIS, and number of VSELs and LT-HSCs. Accordingly, we propose a new paradigm in which a decrease in IIS (e.g., due to caloric restriction that lowers plasma IGF-1 level) may delay the age-dependent elimination of VSELs from adult tissues. By contrast, chronic IIS (e.g., due to chronic high caloric intake and the resulting elevated GH and IGF-1 levels) prematurely depletes VSELs residing in adult organs, which for example in BM leads to a decrease in the number of LT-HSCs. This study also indicates that GH-based anti-aging therapies need careful re-evaluation of their potentially uncontrolled stimulation of VSELs in BM that may lead to development of hematological malignancies. In support of this, elevated GH and IIS lead to hematological malignancies, while, by contrast, Laron dwarf mice and Laron dwarf patients, which have a low plasma IGF-1 levels, do not develop leukemias. Disclosures: Ratajczak: Neostem Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2010 ◽  
pp. P2-166-P2-166
Author(s):  
F Granero-Molto ◽  
TJ Myers ◽  
JA Weis ◽  
Y Yan ◽  
T Li ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-305
Author(s):  
Anna C. Piscaglia ◽  
Federico Barbaro ◽  
Immacolata A. Cazzato ◽  
Luca Di Maurizio ◽  
Gianluca Ianiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document