adult tissues
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 27)

H-INDEX

56
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1984
Author(s):  
Ran-Ran Su ◽  
Zhong-Yan Huang ◽  
Chao-Wei Qin ◽  
Xia-Lin Zheng ◽  
Wen Lu ◽  
...  

Kapok is the main host of Glenea cantor (Fabricius), which causes serious damage and is difficult to control. In severe cases, it often causes the kapok trees to die continuously, which seriously affects the results of urban landscaping. To provide reference for the functional research on related genes in G. cantor, we screened the stable expression of candidate reference genes at different developmental stages (i.e., eggs, larvae, pupae, and adults), in various adult tissues (i.e., head, thorax, abdomen, feet, antennae, and wings), and sexes (i.e., male pupae, female pupae, male adults, and female adults). In this study, 12 candidate reference genes (i.e., ACTINLIKE, ACTININ, TUB, RPL36, RPL32, RPS20, TBP, GAPDH, 18S rRNA, EF1A1, EF1A2, and UBQ) were evaluated using different adult tissues, developmental stages, and sexes. RefFinder, geNorm, NormFinder, and BestKeeper were used to evaluate and comprehensively analyze the stability of the expression of the candidate reference genes. The results show that RPL32 and EF1A1 were the most suitable reference genes in the different adult tissues, and RPL36 and EF1A1 were best at the different developmental stages. RPL36 and EF1A2 were the best fit for the qRT-PCR reference genes in the different sexes, while RPL36 and EF1A1 were the most appropriate qRT-PCR reference genes in all samples. Results from geNorm showed that the optimal number of reference genes was two. We also surveyed the expression of cellulase at the different developmental stages and in the different adult tissues. Results further verified the reliability of the reference genes, and confirmed the best reference genes under the different experimental conditions. This study provides a useful tool for molecular biological studies on G. cantor.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Deepa Bhartiya ◽  
Hiren Patel

AbstractFSH was first identified in 1930 and is central to mammalian reproduction. It is indeed intriguing that despite being researched upon for about 90 years, there is still so much more to learn about FSH-FSHR biology. The purpose of this review is to provide an overview of current understanding of FSH-FSHR biology, to review published data on biological and clinical relevance of reported mutations, polymorphisms and alternately spliced isoforms of FSHR. Tissue-resident stem/progenitor cells in multiple adult tissues including ovaries, testes and uterus express FSHR and this observation results in a paradigm shift in the field. The results suggest a direct action of FSH on the stem cells in addition to their well-studied action on Granulosa and Sertoli cells in the ovaries and testes respectively. Present review further addresses various concerns raised in recent times by the scientific community regarding extragonadal expression of FSHR, especially in cancers affecting multiple organs. Similar population of primitive and pluripotent tissue-resident stem cells expressing FSHR exist in multiple adult tissues including bone marrow and reproductive tissues and help maintain homeostasis throughout life. Any dysfunction of these stem cells results in various pathologies and they also most likely get transformed into cancer stem cells and initiate cancer. This explains why multiple solid as well as liquid tumors express OCT-4 and FSHR. More research efforts need to be focused on alternately spliced FSHR isoforms.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Deepa Bhartiya ◽  
Hiren Patel ◽  
Ankita Kaushik ◽  
Pushpa Singh ◽  
Diksha Sharma

AbstractFollicle stimulating hormone (FSH) is secreted by the anterior pituitary and acts on the germ cells indirectly through Granulosa cells in ovaries and Sertoli cells in the testes. Extragonadal action of FSH has been reported but is still debated. Adult tissues harbor two populations of stem cells including a reserve population of primitive, small-sized, pluripotent very small embryonic-like stem cells (VSELs) and slightly bigger, tissue-specific progenitors which include ovarian stem cells (OSCs) in ovaries, spermatogonial stem cells (SSCs) in testes, endometrial stem cells (EnSCs) in uterus and hematopoietic stem cells (HSCs) in the bone marrow. Data has accumulated in animal models showing FSHR expression on both VSELs and progenitors in ovaries, testes, uterus and bone marrow and eventually gets lost as the cells differentiate further. FSH exerts a direct action on the stem/progenitor cells via alternatively spliced FSHR-3 rather than the canonical FSHR-1. FSH stimulates VSELs to undergo asymmetrical cell divisions to self-renew and give rise to the progenitors that in turn undergo symmetrical cell divisions and clonal expansions followed by differentiation into specific cell types. Excessive self-renewal of VSELs results in cancer and this explains ubiquitous expression of embryonic markers including nuclear OCT-4 along with FSHR in cancerous tissues. Focus of this review is to compile published data to support this concept. FSHR expression in stem/progenitor cells was confirmed by immuno-fluorescence, Western blotting, in situ hybridization and by quantitative RT-PCR. Two different commercially available antibodies (Abcam, Santacruz) were used to confirm specificity of FSHR expression along with omission of primary antibody and pre-incubation of antibody with immunizing peptide as negative controls. Western blotting allowed detection of alternatively spliced FSHR isoforms. Oligoprobes and primers specific for Fshr-1 and Fshr-3 were used to study these alternately-sliced isoforms by in situ hybridization and their differential expression upon FSH treatment by qRT-PCR. To conclude, stem/progenitor cells in adult tissues express FSHR and directly respond to FSH via FSHR-3. These findings change the field of FSH-FSHR biology, call for paradigm shift, explain FSHR expression on cancer cells in multiple organs and provide straightforward explanations for various existing conundrums including extragonadal expression of FSHR.


Author(s):  
Yaqiang Hong ◽  
Dake Zhang ◽  
Xiangtian Zhou ◽  
Aili Chen ◽  
Amir Abliz ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1485
Author(s):  
Pooja Flora ◽  
Gil Dalal ◽  
Idan Cohen ◽  
Elena Ezhkova

Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms’ lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.


Development ◽  
2021 ◽  
Vol 148 (17) ◽  
Author(s):  
Lois A. Salamonsen ◽  
Jennifer C. Hutchison ◽  
Caroline E. Gargett

ABSTRACT Uniquely among adult tissues, the human endometrium undergoes cyclical shedding, scar-free repair and regeneration during a woman's reproductive life. Therefore, it presents an outstanding model for study of such processes. This Review examines what is known of endometrial repair and regeneration following menstruation and parturition, including comparisons with wound repair and the influence of menstrual fluid components. We also discuss the contribution of endometrial stem/progenitor cells to endometrial regeneration, including the importance of the stem cell niche and stem cell-derived extracellular vesicles. Finally, we comment on the value of endometrial epithelial organoids to extend our understanding of endometrial development and regeneration, as well as therapeutic applications.


2021 ◽  
Author(s):  
Vassili A Kouprianov ◽  
Aubrie A Selmek ◽  
Jordan L Ferguson ◽  
Xiaokui Mo ◽  
Heather R Shive

Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1253
Author(s):  
An-Pei Yang ◽  
Yu-Sheng Wang ◽  
Cong Huang ◽  
Zhi-Chuang Lv ◽  
Wan-Xue Liu ◽  
...  

Tuta absoluta is one of the most significant invasive pests affecting tomato plants worldwide. RT-qPCR has emerged as one of the most sensitive and accurate methods for detecting gene expression data. The screening of stable internal reference genes is the most critical step for studying the molecular mechanisms of environmental adaptability. The stable reference genes expressed in T. absoluta under specific experimental conditions have not yet been clarified. In this study, seven candidate reference genes (RPL27, RPS13, RPS15, EF1-α, TUB, TBP, and β-actin) and their optimal numbers were evaluated under biotic (developmental stages and adult tissues) and abiotic (insecticide, temperature, and plant VOC) conditions using four software programs. Our results identified the following reference genes and numbers as optimal: three genes (EF1-α, RPS13, and RPL27) for different developmental stages (egg, larva, pupa, unmated adult), two genes (RPS13 and TBP) for adult tissues (antenna, head, thorax, abdomen, leg), two genes (TBP and RPS13) for insecticides (Bacillus thuringiensis, chlorpyrifos, abamectin-aminomethyl, and chlorantraniliprole), two genes (RPL27 and TUB) for temperature-induced stresses (0, 25, and 40 °C), and two genes (RPS13 and TUB) for VOC-induced stresses (nonanal, α-phellandrene, and tomato leaves). Our results provide a reference for selecting appropriate reference genes for further study of the functional genes of T. absoluta under different experimental conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Deepa Bhartiya

AbstractLife-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.


Sign in / Sign up

Export Citation Format

Share Document