scholarly journals Characterization of retinoic acid components during intestinal regeneration of the sea cucumber Holothuria glaberrima

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Roxana Loperena ◽  
Jose Enrique Garcia-Arraras
2012 ◽  
Vol 56 (9) ◽  
pp. 681-691 ◽  
Author(s):  
Consuelo Pasten ◽  
Rey Rosa ◽  
Stephanie Ortiz ◽  
Sebastián González ◽  
José E. García-Arrarás

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Lymarie M. Díaz-Díaz ◽  
Natalia Rosario-Meléndez ◽  
Andrea Rodríguez-Villafañe ◽  
Yariel Y. Figueroa-Vega ◽  
Omar A. Pérez-Villafañe ◽  
...  

The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.


Author(s):  
David Quispe-Parra ◽  
Griselle Valentín ◽  
José E. García-Arrarás

Regeneration of lost or injured organs is an intriguing process where numerous cellular events take place to form the new structure. Studies of this process during reconstitution of the intestine have been performed in echinoderms, particularly in holothurians. Many cellular events triggered during regeneration have been described using the sea cucumber Holothuria glaberrima as a research model. More recent experiments have targeted the molecular mechanism behind the process, a task that has been eased by the new sequencing technologies now available. In this review we present the studies involving cellular processes and the genes that have been identified to be associated with the early events of gut regeneration. We also present the ongoing efforts to perform functional studies necessary to establish the role(s) of the identified genes. A synopsis of the studies is given with the course of the regenerative process established so far.


1992 ◽  
Vol 182 (2) ◽  
pp. 241-247 ◽  
Author(s):  
L. Diaz-Miranda ◽  
D. A. Price ◽  
M. J. Greenberg ◽  
T. D. Lee ◽  
K. E. Doble ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0208011 ◽  
Author(s):  
María Pagán-Jiménez ◽  
Jean F. Ruiz-Calderón ◽  
María G. Dominguez-Bello ◽  
José E. García-Arrarás

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 873 ◽  
Author(s):  
Jorge Viera-Vera ◽  
José E. García-Arrarás

Almost every organism has the ability of repairing damaged tissues or replacing lost and worn out body parts, nevertheless the degree of the response substantially differs between each species. Adult sea cucumbers from the Holothuria glaberrima species can eviscerate various organs and the intestinal system is the first one to regenerate. This process involves the formation of a blastema-like structure that derives from the torn mesentery edges by the intervention of specific cellular processes (e.g., cell dedifferentiation and division). Still, the genetic networks controlling the regenerative response in this model system are just starting to be unraveled. In this work we examined if and how the retinoic acid (RA) signaling pathway is involved in the regenerative response of this deuterostome. We first identified and characterized the holothurian orthologs for short chain dehydrogenase/reductase 7 (SDR7) and aldehyde dehydrogenase family 8A1 (ALDH8A1), two enzymes respectively associated with retinaldehyde and RA anabolism. We then showed that the SDR7 transcript was differentially expressed during specific stages of intestinal regeneration while ALDH8A1 did not show significant differences in regenerating tissues when compared to those of normal (non-eviscerated) organisms. Finally, we investigated the consequences of modulating RA signaling during intestinal regeneration using pharmacological tools. We showed that application of an inhibitor (citral) of the enzyme synthesizing RA or a retinoic acid receptor (RAR) antagonist (LE135) resulted in organisms with a significantly smaller intestinal rudiment when compared to those treated with DMSO (vehicle). The two inhibitors caused a reduction in cell division and cell dedifferentiation in the new regenerate when compared to organisms treated with DMSO. Results of treatment with tazarotene (an RAR agonist) were not significantly different from the control. Taken together, these results suggest that the RA signaling pathway is regulating the cellular processes that are crucial for intestinal regeneration to occur. Thus, RA might be playing a role in echinoderm regeneration that is similar to what has been described in other animal systems.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4131-4143 ◽  
Author(s):  
Alan K. Burnett ◽  
David Grimwade ◽  
Ellen Solomon ◽  
Keith Wheatley ◽  
Anthony H. Goldstone

Abstract All-trans retinoic acid (ATRA) is an essential component of the treatment of acute promyelocytic leukemia (APL), but the optimal timing and duration remain to be determined. Molecular characterization of this disease can refine the diagnosis and could be potentially useful in monitoring response to treatment. Patients defined morphologically to have APL were randomized to receive a 5-day course of ATRA before commencing chemotherapy or to receive daily ATRA commencing with chemotherapy and continuing until complete remission (CR). The chemotherapy was that used in current MRC Leukaemia Trials. Outcome comparisons were by intention to treat with additional analysis for relevant risk factors. Patients were characterized by molecular techniques for the fusion products of the t(15;17) and monitored by reverse transcriptase-polymerase chain reaction (RT-PCR) during and after treatment. Two hundred thirty-nine patients were randomized. Treatment with extended ATRA resulted in a superior remission rate (87% v 70%, P < .001), due to fewer early and induction deaths (12% v 23%, P = .02), and less resistant disease (2% v 7%, P = .03), which was associated with a significantly more rapid recovery of neutrophils and platelets. Extended ATRA reduced relapse risk (20%v 36% at 4 years, P = .04) and resulted in superior survival (71% v 52% at 4 years, P = .005). Presenting white blood cell count (WBC) was a key determinant of outcome. The 70% of patients who presented with a WBC less than 10 × 109/L had a better CR (85% v62%, P = .0001) and reduced relapse risk (22% v42%, P = .002) and superior survival (69%v 43%, P < .0001). Within the low count group, extended ATRA resulted in a better CR (94% v 76%, P= .001), reduced relapse risk (13% v 35%, P = .04), and improved survival (80% v 57%, P = .0009). There was no evidence of benefit in patients presenting with a higher WBC (>10 × 109/L). Molecular monitoring after the third chemotherapy course had a correlation with risk of relapse. The relapse risk was 57% if the RT-PCR was positive versus 27% if the RT-PCR was negative (P = .006). APL patients who present with a low WBC derive substantial benefit from combining ATRA with induction chemotherapy until remission is achieved, whereas patients with a higher WBC did not benefit. Molecular characterization of disease can improve diagnostic precision and a positive RT-PCR after consolidation identifies patients at a higher risk of relapse.


Sign in / Sign up

Export Citation Format

Share Document