scholarly journals Endothelial dysfunction driven by mitochondrial reactive oxygen species – proof of concept studies in CypD −/− mice

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Steffen Daub ◽  
Swenja Kroeller‐Schoen ◽  
Sebastian Steven ◽  
Sabine Kossmann ◽  
Alexander Scholz ◽  
...  
Author(s):  
Ahmed Karoui ◽  
Clément Crochemore ◽  
Najah Harouki ◽  
Cécile Corbière ◽  
David Preterre ◽  
...  

Traffic air pollution is a major health problem and is recognized as an important risk factor for cardiovascular (CV) diseases. In a previous experimental study, we showed that diesel exhaust (DE) exposures induced cardiac mitochondrial and CV dysfunctions associated with the gaseous phase. Here, we hypothesized that NO2 exposures to levels close to those found in DE induce a mitochondrial reactive oxygen species (ROS) production, which contribute to an endothelial dysfunction, an early indicator for numerous CV diseases. For this, we studied the effects of NO2 on ROS production and its impacts on the mitochondrial, coronary endothelial and cardiac functions, after acute (one single exposure) and repeated (three h/day, five days/week for three weeks) exposures in Wistar rats. Acute NO2 exposure induced an early but reversible mitochondrial ROS production. This event was isolated since neither mitochondrial function nor endothelial function were impaired, whereas cardiac function assessment showed a reversible left ventricular dysfunction. Conversely, after three weeks of exposure this alteration was accompanied by a cardiac mitochondrial dysfunction highlighted by an alteration of adenosine triphosphate (ATP) synthesis and oxidative phosphorylation and an increase in mitochondrial ROS production. Moreover, repeated NO2 exposures promoted endothelial dysfunction of the coronary arteries, as shown by reduced acetylcholine-induced vasodilatation, which was due, at least partially, to a superoxide-dependent decrease of nitric oxide (NO) bioavailability. This study shows that NO2 exposures impair cardiac mitochondrial function, which, in conjunction with coronary endothelial dysfunction, contributes to cardiac dysfunction. Together, these results clearly identify NO2 as a probable risk factor in ischemic heart diseases.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 379
Author(s):  
Luchuanyang Sun ◽  
Nobuyuki Miyaji ◽  
Min Yang ◽  
Edward M. Mills ◽  
Shigeto Taniyama ◽  
...  

Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in the lipid bilayer. This study aimed to investigate the effects of AX on muscle-atrophy-mediated disturbance of mitochondria, which have a lipid bilayer. Tail suspension was used to establish a muscle-atrophied mouse model. AX diet fed to tail-suspension mice prevented loss of muscle weight, inhibited the decrease of myofiber size, and restrained the increase of hydrogen peroxide (H2O2) production in the soleus muscle. Additionally, AX improved downregulation of mitochondrial respiratory chain complexes I and III in the soleus muscle after tail suspension. Meanwhile, AX promoted mitochondrial biogenesis by upregulating the expressions of adenosine 5′-monophosphate–activated protein kinase (AMPK) α-1, peroxisome proliferator–activated receptor (PPAR)-γ, and creatine kinase in mitochondrial (Ckmt) 2 in the soleus muscle of tail-suspension mice. To confirm the AX phenotype in the soleus muscle, we examined its effects on mitochondria using Sol8 myotubes derived from the soleus muscle. We found that AX was preferentially detected in the mitochondrial fraction; it significantly suppressed mitochondrial reactive oxygen species (ROS) production in Sol8 myotubes. Moreover, AX inhibited the activation of caspase 3 via inhibiting the release of cytochrome c into the cytosol in antimycin A–treated Sol8 myotubes. These results suggested that AX protected the functional stability of mitochondria, alleviated mitochondrial oxidative stress and mitochondria-mediated apoptosis, and thus, prevented muscle atrophy.


Sign in / Sign up

Export Citation Format

Share Document