scholarly journals Effect of glutamine supplementation and resistive training in signaling pathways of protein synthesis and degradation in rat skeletal muscle

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Tania C Pithon‐Curi ◽  
Carlos F Rodrigues ◽  
Luis G O Sousa ◽  
Diogo A Vasconcelos ◽  
Marco A Vinolo ◽  
...  
1986 ◽  
Vol 40 (3) ◽  
pp. 248-260 ◽  
Author(s):  
Paul D. Greig ◽  
S.Jaime Rozovski ◽  
David H. Elwyn ◽  
John M. Kinney

2020 ◽  
Vol 319 (2) ◽  
pp. C419-C431
Author(s):  
Douglas W. Van Pelt ◽  
Ivan J. Vechetti ◽  
Marcus M. Lawrence ◽  
Kathryn L. Van Pelt ◽  
Parth Patel ◽  
...  

Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.


1996 ◽  
Vol 270 (6) ◽  
pp. R1231-R1239 ◽  
Author(s):  
S. E. Samuels ◽  
J. R. Thompson ◽  
R. J. Christopherson

Young animals exposed to cold environmental temperatures typically have decreased skeletal muscle accretion but increased heart masses. To explore these phenomena, we measured protein synthesis and degradation in vivo in cardiac and skeletal muscle in weanling rats during short-term cold exposure and rewarming. Control rats were housed at 25 degrees C throughout the experiment. Ad libitum-fed and pair-fed (to the intake of controls) rats were housed at 5 degrees C (cold) for 5 days and then at 25 degrees C (rewarmed) for another 5 days. Cold exposure decreased rates of protein accretion and synthesis in skeletal muscle, whereas degradation did not differ. The effects of cold exposure on skeletal muscle were similar in both pair-fed and ad libitum-fed rats, except growth was lower in pair-fed rats. In cardiac muscle, cold exposure increased rates of protein synthesis and degradation and resulted in increased cardiac mass. Results in pair-fed animals generally fell between those of control and ad libitum-fed cold rats. During rewarming, growth rates were not higher in skeletal muscle in ad libitum-fed re-warmed rats, although protein turnover returned toward control values; in pair-fed rats, it remained lower. In heart, growth rates of ad libitum-fed and pair-fed rewarmed rats decreased due to lower protein synthesis rates. These alterations appear to be consistent with a strategy designed to improve survival in cold environments.


1994 ◽  
Vol 45 (5) ◽  
pp. 1432-1439 ◽  
Author(s):  
Giacomo Garibotto ◽  
Rodolfo Russo ◽  
Antonella Sofia ◽  
Maria Rita Sala ◽  
Cristina Robaudo ◽  
...  

2020 ◽  
Vol 129 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Paul A. Roberson ◽  
Kevin L. Shimkus ◽  
Jaclyn E. Welles ◽  
Dandan Xu ◽  
Abigale L. Whitsell ◽  
...  

Hindlimb unloading causes significant skeletal muscle atrophy by adversely affecting the balance between protein synthesis and breakdown. This study demonstrates a more complete time course for changes in biomarkers associated with protein synthesis and breakdown and investigates the associated anabolic resistance to an anabolic stimulus following hindlimb unloading. These data in concert with information from other studies provide a basis for designing future experiments to optimally interrogate a desired cellular biomarker or pathway.


1984 ◽  
Vol 222 (3) ◽  
pp. 579-586 ◽  
Author(s):  
W E Mitch ◽  
A S Clark

The effects of leucine, its metabolites, and the 2-oxo acids of valine and isoleucine on protein synthesis and degradation in incubated limb muscles of immature and adult rats were tested. Leucine stimulated protein synthesis but did not reduce proteolysis when leucine transamination was inhibited. 4-Methyl-2-oxopentanoate at concentrations as low as 0.25 mM inhibited protein degradation but did not change protein synthesis. The 2-oxo acids of valine and isoleucine did not change protein synthesis or degradation even at concentrations as high as 5 mM. 3-Methylvalerate, the irreversibly decarboxylated product of 4-methyl-2-oxopentanoate, decreased protein degradation at concentrations greater than or equal to 1 mM. This was not due to inhibition of 4-methyl-2-oxopentanoate catabolism, because 0.5 mM-3-methylvalerate did not suppress proteolysis, even though it inhibited leucine decarboxylation by 30%; higher concentrations of 3-methylvalerate decreased proteolysis progressively without inhibiting leucine decarboxylation further. During incubation with [1-14C]- and [U-14C]-leucine, it was found that products of leucine catabolism formed subsequent to the decarboxylation of 4-methyl-2-oxopentanoate accumulated intracellularly. This pattern was not seen during incubation with radiolabelled valine. Thus, the effect of leucine on muscle proteolysis requires transamination to 4-methyl-2-oxopentanoate. The inhibition of muscle protein degradation by leucine is most sensitive to, but not specific for, its 2-oxo acid, 4-methyl-2-oxopentanoate.


Sign in / Sign up

Export Citation Format

Share Document